Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Malaria | Research

Childhood malaria case incidence in Malawi between 2004 and 2017: spatio-temporal modelling of climate and non-climate factors

Authors: James Chirombo, Pietro Ceccato, Rachel Lowe, Dianne J Terlouw, Madeleine C Thomson, Austin Gumbo, Peter J Diggle, Jonathan M Read

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Malaria transmission is influenced by a complex interplay of factors including climate, socio-economic, environmental factors and interventions. Malaria control efforts across Africa have shown a mixed impact. Climate driven factors may play an increasing role with climate change. Efforts to strengthen routine facility-based monthly malaria data collection across Africa create an increasingly valuable data source to interpret burden trends and monitor control programme progress. A better understanding of the association with other climatic and non-climatic drivers of malaria incidence over time and space may help guide and interpret the impact of interventions.

Methods

Routine monthly paediatric outpatient clinical malaria case data were compiled from 27 districts in Malawi between 2004 and 2017, and analysed in combination with data on climatic, environmental, socio-economic and interventional factors and district level population estimates. A spatio-temporal generalized linear mixed model was fitted using Bayesian inference, in order to quantify the strength of association of the various risk factors with district-level variation in clinical malaria rates in Malawi, and visualized using maps.

Results

Between 2004 and 2017 reported childhood clinical malaria case rates showed a slight increase, from 50 to 53 cases per 1000 population, with considerable variation across the country between climatic zones. Climatic and environmental factors, including average monthly air temperature and rainfall anomalies, normalized difference vegetative index (NDVI) and RDT use for diagnosis showed a significant relationship with malaria incidence. Temperature in the current month and in each of the 3 months prior showed a significant relationship with the disease incidence unlike rainfall anomaly which was associated with malaria incidence at only three months prior. Estimated risk maps show relatively high risk along the lake and Shire valley regions of Malawi.

Conclusion

The modelling approach can identify locations likely to have unusually high or low risk of malaria incidence across Malawi, and distinguishes between contributions to risk that can be explained by measured risk-factors and unexplained residual spatial variation. Also, spatial statistical methods applied to readily available routine data provides an alternative information source that can supplement survey data in policy development and implementation to direct surveillance and intervention efforts.
Appendix
Available only for authorised users
Literature
1.
go back to reference Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, et al. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature. 2017;550(7677):515.PubMedPubMedCentralCrossRef Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, et al. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature. 2017;550(7677):515.PubMedPubMedCentralCrossRef
2.
go back to reference Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118(5):620.PubMedCrossRef Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118(5):620.PubMedCrossRef
3.
go back to reference Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int. 2016;86:14–23.PubMedCrossRef Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int. 2016;86:14–23.PubMedCrossRef
4.
go back to reference Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341(6145):514–9.PubMedCrossRef Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341(6145):514–9.PubMedCrossRef
5.
go back to reference Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78(9):1136–47.PubMedPubMedCentral Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78(9):1136–47.PubMedPubMedCentral
6.
go back to reference Cash B, Rodó X, Ballester J, Bouma M, Baeza A, Dhiman R, et al. Malaria epidemics and the influence of the tropical South Atlantic on the Indian monsoon. Nat Clim Chang. 2013;3(5):502–7.CrossRef Cash B, Rodó X, Ballester J, Bouma M, Baeza A, Dhiman R, et al. Malaria epidemics and the influence of the tropical South Atlantic on the Indian monsoon. Nat Clim Chang. 2013;3(5):502–7.CrossRef
7.
8.
9.
go back to reference Yadav K, Dhiman S, Rabha B, Saikia P, Veer V. Socio-economic determinants for malaria transmission risk in an endemic primary health centre in Assam, India. Infect Dis Poverty. 2014;3(1):19.PubMedPubMedCentralCrossRef Yadav K, Dhiman S, Rabha B, Saikia P, Veer V. Socio-economic determinants for malaria transmission risk in an endemic primary health centre in Assam, India. Infect Dis Poverty. 2014;3(1):19.PubMedPubMedCentralCrossRef
10.
go back to reference Nkegbe PK, Kuunibe N, Sekyi S. Poverty and malaria morbidity in the Jirapa District of Ghana: a count regression approach. Cogent Economics & Finance. 2017;5(1):1293472.CrossRef Nkegbe PK, Kuunibe N, Sekyi S. Poverty and malaria morbidity in the Jirapa District of Ghana: a count regression approach. Cogent Economics & Finance. 2017;5(1):1293472.CrossRef
11.
go back to reference Yu W, Mengersen K, Dale P, Ye X, Guo Y, Turner L, et al. Projecting future transmission of malaria under climate change scenarios: challenges and research needs. Crit Rev Environ Sci Technol. 2015;45(7):777–811.CrossRef Yu W, Mengersen K, Dale P, Ye X, Guo Y, Turner L, et al. Projecting future transmission of malaria under climate change scenarios: challenges and research needs. Crit Rev Environ Sci Technol. 2015;45(7):777–811.CrossRef
12.
go back to reference Abeku T, De Vlas S, Borsboom G, Tadege A, Gebreyesus Y, Gebreyohannes H, et al. Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology. 2004;128(6):585–93.PubMedCrossRef Abeku T, De Vlas S, Borsboom G, Tadege A, Gebreyesus Y, Gebreyohannes H, et al. Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology. 2004;128(6):585–93.PubMedCrossRef
13.
go back to reference Ikeda T, Behera SK, Morioka Y, Minakawa N, Hashizume M, Tsuzuki A, et al. Seasonally lagged effects of climatic factors on malaria incidence in South Africa. Sci Rep. 2017;7(1):2458.PubMedPubMedCentralCrossRef Ikeda T, Behera SK, Morioka Y, Minakawa N, Hashizume M, Tsuzuki A, et al. Seasonally lagged effects of climatic factors on malaria incidence in South Africa. Sci Rep. 2017;7(1):2458.PubMedPubMedCentralCrossRef
14.
go back to reference Mabaso ML, Vounatsou P, Midzi S, Da Silva J, Smith T. Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe. Int J Health Geogr. 2006;5(1):20.PubMedPubMedCentralCrossRef Mabaso ML, Vounatsou P, Midzi S, Da Silva J, Smith T. Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe. Int J Health Geogr. 2006;5(1):20.PubMedPubMedCentralCrossRef
16.
go back to reference Diggle P, Moyeed R, Rowlingson B, Thomson M. Childhood malaria in the Gambia: a case-study in model-based geostatistics. J R Stat Soc Ser C Appl Stat. 2002;51(4):493–506.CrossRef Diggle P, Moyeed R, Rowlingson B, Thomson M. Childhood malaria in the Gambia: a case-study in model-based geostatistics. J R Stat Soc Ser C Appl Stat. 2002;51(4):493–506.CrossRef
17.
go back to reference Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CA, Carvalho MS, et al. Spatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput and Geosci. 2011;37(3):371–81.CrossRef Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CA, Carvalho MS, et al. Spatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput and Geosci. 2011;37(3):371–81.CrossRef
18.
go back to reference Kazembe LN, Kleinschmidt I, Holtz TH, Sharp BL. Spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of infection data. Int J Health Geogr. 2006;5(1):41.PubMedPubMedCentralCrossRef Kazembe LN, Kleinschmidt I, Holtz TH, Sharp BL. Spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of infection data. Int J Health Geogr. 2006;5(1):41.PubMedPubMedCentralCrossRef
19.
go back to reference Lowe R, Barcellos C, Coelho CA, Bailey TC, Coelho GE, Graham R, et al. Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect Dis. 2014;14(7):619–26.PubMedCrossRef Lowe R, Barcellos C, Coelho CA, Bailey TC, Coelho GE, Graham R, et al. Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect Dis. 2014;14(7):619–26.PubMedCrossRef
20.
go back to reference Thomson MC, Mason SJ, Phindela T, Connor SJ. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg. 2005;73(1):214–21.PubMedCrossRef Thomson MC, Mason SJ, Phindela T, Connor SJ. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg. 2005;73(1):214–21.PubMedCrossRef
21.
go back to reference Thomson M, Doblas-Reyes F, Mason S, Hagedorn R, Connor S, Phindela T, et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature. 2006;439(7076):576–9.PubMedCrossRef Thomson M, Doblas-Reyes F, Mason S, Hagedorn R, Connor S, Phindela T, et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature. 2006;439(7076):576–9.PubMedCrossRef
22.
go back to reference Connor SJ, Mantilla GC. Integration of seasonal forecasts into early warning systems for climate-sensitive diseases such as malaria and dengue. In: Seasonal forecasts, climatic change and human health. New York: Springer; 2008. p. 71–84.CrossRef Connor SJ, Mantilla GC. Integration of seasonal forecasts into early warning systems for climate-sensitive diseases such as malaria and dengue. In: Seasonal forecasts, climatic change and human health. New York: Springer; 2008. p. 71–84.CrossRef
23.
go back to reference Tompkins AM, Larsen L, McCreesh N, Taylor D. To what extent does climate explain variations in reported malaria cases in early 20th century Uganda? Geospat Health. 2016;11(1s):407.PubMed Tompkins AM, Larsen L, McCreesh N, Taylor D. To what extent does climate explain variations in reported malaria cases in early 20th century Uganda? Geospat Health. 2016;11(1s):407.PubMed
24.
go back to reference Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop Med Int Health. 2000;5(4):263–74.PubMedCrossRef Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop Med Int Health. 2000;5(4):263–74.PubMedCrossRef
25.
go back to reference Bødker R, Kisinza W, Malima R, Msangeni H, Lindsay S. Resurgence of malaria in the Usambara mountains, Tanzania, an epidemic of drug-resistant parasites. Global Change and Human Health. 2000;1(2):134–53.CrossRef Bødker R, Kisinza W, Malima R, Msangeni H, Lindsay S. Resurgence of malaria in the Usambara mountains, Tanzania, an epidemic of drug-resistant parasites. Global Change and Human Health. 2000;1(2):134–53.CrossRef
26.
27.
go back to reference Lowe R, Chirombo J, Tompkins AM. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J. 2013;12(1):1.CrossRef Lowe R, Chirombo J, Tompkins AM. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J. 2013;12(1):1.CrossRef
28.
go back to reference Ministry of Health (MOH) and ICF. 2010 Malawi malaria indicator survey. Lilongwe,Malawi, and Rockville,Maryland,USA: NMCP and ICF; 2011. Ministry of Health (MOH) and ICF. 2010 Malawi malaria indicator survey. Lilongwe,Malawi, and Rockville,Maryland,USA: NMCP and ICF; 2011.
29.
go back to reference Ministry of Health (MOH), ICF. 2017 Malawi malaria indicator survey. Lilongwe,Malawi, and Rockville,Maryland,USA: NMCP and ICF; 2018. Ministry of Health (MOH), ICF. 2017 Malawi malaria indicator survey. Lilongwe,Malawi, and Rockville,Maryland,USA: NMCP and ICF; 2018.
30.
go back to reference Townes LR, Mwandama D, Mathanga DP, Wilson ML. Elevated dry-season malaria prevalence associated with fine-scale spatial patterns of environmental risk: a case-control study of children in rural Malawi. Malar J. 2013;12(1):1.CrossRef Townes LR, Mwandama D, Mathanga DP, Wilson ML. Elevated dry-season malaria prevalence associated with fine-scale spatial patterns of environmental risk: a case-control study of children in rural Malawi. Malar J. 2013;12(1):1.CrossRef
31.
go back to reference Ngongondo C, Xu CY, Gottschalk L, Alemaw B. Evaluation of spatial and temporal characteristics of rainfall in Malawi: a case of data scarce region. Theor Appl Climatol. 2011;106(1–2):79–93.CrossRef Ngongondo C, Xu CY, Gottschalk L, Alemaw B. Evaluation of spatial and temporal characteristics of rainfall in Malawi: a case of data scarce region. Theor Appl Climatol. 2011;106(1–2):79–93.CrossRef
33.
go back to reference World Health Organization (WHO). Global reference list of 100 core health indicators. Geneva: World Health Organization; 2015. World Health Organization (WHO). Global reference list of 100 core health indicators. Geneva: World Health Organization; 2015.
34.
go back to reference Chandramohan D, Jaffar S, Greenwood B. Use of clinical algorithms for diagnosing malaria. Trop Med Int Health. 2002;7(1):45–52.PubMedCrossRef Chandramohan D, Jaffar S, Greenwood B. Use of clinical algorithms for diagnosing malaria. Trop Med Int Health. 2002;7(1):45–52.PubMedCrossRef
35.
go back to reference Ministry of Health (MOH). Guidelines for use of malaria rapid diagnostic tests (mRDTs) in Malawi. Lilongwe: Ministry of Health (MOH); 2011. Ministry of Health (MOH). Guidelines for use of malaria rapid diagnostic tests (mRDTs) in Malawi. Lilongwe: Ministry of Health (MOH); 2011.
36.
39.
go back to reference Hegerl GC, Brönnimann S, Schurer A, Cowan T. The early 20th century warming: anomalies, causes, and consequences. Wiley Interdiscip Rev Clim Change. 2018;9(4):e522.PubMedPubMedCentralCrossRef Hegerl GC, Brönnimann S, Schurer A, Cowan T. The early 20th century warming: anomalies, causes, and consequences. Wiley Interdiscip Rev Clim Change. 2018;9(4):e522.PubMedPubMedCentralCrossRef
41.
go back to reference National Statistical Office (NSO). Malawi Demographic and Health Survey. National Statistical Office. National Statistical Office (NSO). Malawi Demographic and Health Survey. National Statistical Office.
42.
go back to reference Lawson AB. Bayesian disease mapping: hierarchical modeling in spatial epidemiology. London: CRC Press; 2013. Lawson AB. Bayesian disease mapping: hierarchical modeling in spatial epidemiology. London: CRC Press; 2013.
43.
go back to reference Ugarte M, Ibáñez B, Militino A. Modelling risks in disease mapping. Stat Methods Med Res. 2006;15(1):21–35.PubMedCrossRef Ugarte M, Ibáñez B, Militino A. Modelling risks in disease mapping. Stat Methods Med Res. 2006;15(1):21–35.PubMedCrossRef
44.
go back to reference Leroux BG, Lei X, Breslow N. Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Statistical models in epidemiology, the environment, and clinical trials. New York: Springer; 2000. p. 179–91.CrossRef Leroux BG, Lei X, Breslow N. Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Statistical models in epidemiology, the environment, and clinical trials. New York: Springer; 2000. p. 179–91.CrossRef
45.
go back to reference Lee D, Rushworth A, Napier G. Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package. J Stat Softw. 2018;84(9):1–39.CrossRef Lee D, Rushworth A, Napier G. Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package. J Stat Softw. 2018;84(9):1–39.CrossRef
46.
go back to reference Rue H, Held L. Gaussian Markov random fields: theory and applications. London: Chapman and Hall/CRC; 2005.CrossRef Rue H, Held L. Gaussian Markov random fields: theory and applications. London: Chapman and Hall/CRC; 2005.CrossRef
47.
go back to reference Geweke J, et al. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, vol. 196. Minneapolis, MN, USA: Federal Reserve Bank of Minneapolis, Research Department; 1991. Geweke J, et al. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, vol. 196. Minneapolis, MN, USA: Federal Reserve Bank of Minneapolis, Research Department; 1991.
49.
go back to reference Nkumama IN, O’Meara WP, Osier FH. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 2017;33(2):128–40.PubMedCrossRef Nkumama IN, O’Meara WP, Osier FH. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 2017;33(2):128–40.PubMedCrossRef
50.
go back to reference Hoek WVD, Konradsen F, Perera D, Amerasinghe PH, Amerasinghe FP. Correlation between rainfall and malaria in the dry zone of Sri Lanka. Ann Trop Med Parasitol. 1997;91(8):945–9.PubMedCrossRef Hoek WVD, Konradsen F, Perera D, Amerasinghe PH, Amerasinghe FP. Correlation between rainfall and malaria in the dry zone of Sri Lanka. Ann Trop Med Parasitol. 1997;91(8):945–9.PubMedCrossRef
51.
go back to reference Lindsay SW, Bødker R, Malima R, Msangeni HA, Kisinza W. Effect of 1997–98 El Niño on highland malaria in Tanzania. The Lancet. 2000;355(9208):989–90.CrossRef Lindsay SW, Bødker R, Malima R, Msangeni HA, Kisinza W. Effect of 1997–98 El Niño on highland malaria in Tanzania. The Lancet. 2000;355(9208):989–90.CrossRef
52.
go back to reference Abeku TA, van Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema J. Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Trop. 2003;87(3):331–40.PubMedCrossRef Abeku TA, van Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema J. Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Trop. 2003;87(3):331–40.PubMedCrossRef
53.
go back to reference Gaudart J, Touré O, Dessay N, lassane Dicko A, Ranque S, Forest L, et al. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area. Mali. Malar J. 2009;8(1):61.PubMedCrossRef Gaudart J, Touré O, Dessay N, lassane Dicko A, Ranque S, Forest L, et al. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area. Mali. Malar J. 2009;8(1):61.PubMedCrossRef
54.
go back to reference Fastring D, Griffith J. Malaria incidence in Nairobi, Kenya and dekadal trends in NDVI and climatic variables. Geocarto Int. 2009;24(3):207–21.CrossRef Fastring D, Griffith J. Malaria incidence in Nairobi, Kenya and dekadal trends in NDVI and climatic variables. Geocarto Int. 2009;24(3):207–21.CrossRef
56.
go back to reference Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. Open Science. 2017;4(3):160969. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. Open Science. 2017;4(3):160969.
57.
go back to reference Stresman GH. Beyond temperature and precipitation: ecological risk factors that modify malaria transmission. Acta Trop. 2010;116(3):167–72.PubMedCrossRef Stresman GH. Beyond temperature and precipitation: ecological risk factors that modify malaria transmission. Acta Trop. 2010;116(3):167–72.PubMedCrossRef
58.
go back to reference Lyon B, Dinku T, Raman A, Thomson MC. Temperature suitability for malaria climbing the Ethiopian Highlands. Environ Res Lett. 2017;12(6):064015.CrossRef Lyon B, Dinku T, Raman A, Thomson MC. Temperature suitability for malaria climbing the Ethiopian Highlands. Environ Res Lett. 2017;12(6):064015.CrossRef
59.
go back to reference Amouzou A, Kachaka W, Banda B, Chimzimu M, Hill K, Bryce J. Monitoring child survival in ‘real-time’ using routine health facility records: results from Malawi. Trop Med Int Health. 2013;18(10):1231–9.PubMedPubMedCentralCrossRef Amouzou A, Kachaka W, Banda B, Chimzimu M, Hill K, Bryce J. Monitoring child survival in ‘real-time’ using routine health facility records: results from Malawi. Trop Med Int Health. 2013;18(10):1231–9.PubMedPubMedCentralCrossRef
60.
go back to reference Dinku T, Cousin R, Corral J, Vadillo A. The ENACTS Approach: Transforming climate services in Africa one country at a time. World Policy Papers. 2016; p. 1–24. Dinku T, Cousin R, Corral J, Vadillo A. The ENACTS Approach: Transforming climate services in Africa one country at a time. World Policy Papers. 2016; p. 1–24.
61.
go back to reference Wakefield J, Lyons H. Spatial aggregation and the ecological fallacy. Handbook of Spatial Statistics. 2010; p. 541–58. Wakefield J, Lyons H. Spatial aggregation and the ecological fallacy. Handbook of Spatial Statistics. 2010; p. 541–58.
Metadata
Title
Childhood malaria case incidence in Malawi between 2004 and 2017: spatio-temporal modelling of climate and non-climate factors
Authors
James Chirombo
Pietro Ceccato
Rachel Lowe
Dianne J Terlouw
Madeleine C Thomson
Austin Gumbo
Peter J Diggle
Jonathan M Read
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3097-z

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.