Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Methodology

Performance evaluation of machine learning-based infectious screening flags on the HORIBA Medical Yumizen H550 Haematology Analyzer for vivax malaria and dengue fever

Authors: Parag Dharap, Sebastien Raimbault

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Automated detection of malaria and dengue infection has been actively researched for more than two decades. Although many improvements have been achieved, these solutions remain too expensive for most laboratories and clinics in developing countries. The low range HORIBA Medical Haematology Analyzer, Yumizen H550, now provides dedicated flags ‘vivax malaria’ and ‘dengue fever’ in routine blood testing, developed through machine learning methods, to be used as a screening tool for malaria and dengue fever in endemic areas. This study sought to evaluate the effectiveness of these flags under real clinical conditions.

Methods

A total of 1420 samples were tested using the Yumizen H550 Haematology Analyzer, including 1339 samples from febrile patients among whom 202 were infected with malaria parasites (Plasmodium vivax only: 182, Plasmodium falciparum only: 18, both: 2), 210 were from febrile dengue infected patients, 3 were from afebrile dengue infected patients and 78 were samples from healthy controls, in an outpatient laboratory clinic in Mumbai, India. Microscopic examination was carried out as the confirmatory reference method for detection of malarial parasite, species identification and assessing parasitaemia based on different stages of parasite life cycle. Rapid diagnostic malarial antigen tests were used for additional confirmation. For dengue infection, NS1 antigen detection by ELISA was used as a diagnostic marker.

Results

For the automated vivax malaria flag, the original manufacturer’s cut off yielded a sensitivity and specificity of 65.2% and 98.9% respectively with the ROC AUC of 0.9. After optimization of cut-off value, flag performance improved to 72% for sensitivity and 97.9% specificity. Additionally it demonstrated a positive correlation with increasing levels of parasitaemia. For the automated dengue fever flag it yielded a ROC AUC of 0.82 with 79.3% sensitivity and 71.5% specificity.

Conclusions

The results demonstrate a possibility of the effective use of automated infectious flags for screening vivax malaria and dengue infection in a clinical setting.
Literature
1.
go back to reference Zalis MG, Ferreira-da-Cruz MF, Balthazar-Guedes HC, Banic DM, Alecrim W, Souza JM, et al. Malaria diagnosis: standardization of a polymerase chain reaction for the detection of Plasmodium falciparum parasites in individuals with low-grade parasitemia. Parasitol Res. 1996;82:612–6.CrossRef Zalis MG, Ferreira-da-Cruz MF, Balthazar-Guedes HC, Banic DM, Alecrim W, Souza JM, et al. Malaria diagnosis: standardization of a polymerase chain reaction for the detection of Plasmodium falciparum parasites in individuals with low-grade parasitemia. Parasitol Res. 1996;82:612–6.CrossRef
2.
go back to reference Grimberg B, Erickson J, Sramkoski R, Jacobberger J, Zimmerman P. Monitoring Plasmodium falciparum growth and development by UV flow cytometry using an optimized Hoechst-Thiazole orange staining strategy. Cytometry A. 2008;73:546–54.CrossRef Grimberg B, Erickson J, Sramkoski R, Jacobberger J, Zimmerman P. Monitoring Plasmodium falciparum growth and development by UV flow cytometry using an optimized Hoechst-Thiazole orange staining strategy. Cytometry A. 2008;73:546–54.CrossRef
3.
go back to reference Wongchotigul V, Suwanna N, Krudsood S, Chindanond D, Kano S, Hanaoka N, et al. The use of flow cytometry as a diagnostic test for malaria parasites. Southeast Asian J Trop Med Public Health. 2004;35:552–9.PubMed Wongchotigul V, Suwanna N, Krudsood S, Chindanond D, Kano S, Hanaoka N, et al. The use of flow cytometry as a diagnostic test for malaria parasites. Southeast Asian J Trop Med Public Health. 2004;35:552–9.PubMed
4.
go back to reference Yoon J, Kwon JA, Yoon SY, Jang WS, Yang DJ, Nam J, et al. Diagnostic performance of CellaVision DM96 for Plasmodium vivax and Plasmodium falciparum screening in peripheral blood smears. Acta Trop. 2019;193:7–11.CrossRef Yoon J, Kwon JA, Yoon SY, Jang WS, Yang DJ, Nam J, et al. Diagnostic performance of CellaVision DM96 for Plasmodium vivax and Plasmodium falciparum screening in peripheral blood smears. Acta Trop. 2019;193:7–11.CrossRef
5.
go back to reference Racsa LD, Gander RM, Southern PM, McElvania TeKippe E, Doern C, et al. Detection of intracellular parasites by use of the CellaVision DM96 analyzer during routine screening of peripheral blood smears. J Clin Microbiol. 2015;53:167–71.CrossRef Racsa LD, Gander RM, Southern PM, McElvania TeKippe E, Doern C, et al. Detection of intracellular parasites by use of the CellaVision DM96 analyzer during routine screening of peripheral blood smears. J Clin Microbiol. 2015;53:167–71.CrossRef
6.
go back to reference Park M, Hur M, Kim H, Kim HN, Kim SW, Moon HW, et al. Detection of Plasmodium falciparum using automated digital cell morphology analyzer Sysmex DI-60. Clin Chem Lab Med. 2018;56:e284–328.CrossRef Park M, Hur M, Kim H, Kim HN, Kim SW, Moon HW, et al. Detection of Plasmodium falciparum using automated digital cell morphology analyzer Sysmex DI-60. Clin Chem Lab Med. 2018;56:e284–328.CrossRef
7.
go back to reference Lawrence C, Olson JA. Birefringent hemozoin identifies malaria. Am J Clin Pathol. 1986;86:360–3.CrossRef Lawrence C, Olson JA. Birefringent hemozoin identifies malaria. Am J Clin Pathol. 1986;86:360–3.CrossRef
8.
go back to reference Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, et al. Automated malaria detection by depolarization of laser light. Br J Haematol. 1999;104:499–503.CrossRef Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, et al. Automated malaria detection by depolarization of laser light. Br J Haematol. 1999;104:499–503.CrossRef
9.
go back to reference Crespo S, Palacios G, Scott S, Lago M, Puente S. Abnormal depolarizing patterns in three patients with filarial infection. Ann Hematol. 2004;83:313–5.CrossRef Crespo S, Palacios G, Scott S, Lago M, Puente S. Abnormal depolarizing patterns in three patients with filarial infection. Ann Hematol. 2004;83:313–5.CrossRef
10.
go back to reference Baig MA. Evaluation of false + ve cases & diagnostic accuracy of Abbotts CELL-DYN RUBY for diagnosis of malaria parasite. Int J Sci Res. 2015;4:1232–4. Baig MA. Evaluation of false + ve cases & diagnostic accuracy of Abbotts CELL-DYN RUBY for diagnosis of malaria parasite. Int J Sci Res. 2015;4:1232–4.
11.
go back to reference Orbán Á, Butykai Á, Molnár A, Pröhle Z, Fülöp G, Zelles T, et al. Evaluation of a novel magneto-optical method for the detection of malaria parasites. PLoS ONE. 2014;9:e96981.CrossRef Orbán Á, Butykai Á, Molnár A, Pröhle Z, Fülöp G, Zelles T, et al. Evaluation of a novel magneto-optical method for the detection of malaria parasites. PLoS ONE. 2014;9:e96981.CrossRef
12.
go back to reference Maier A, Rug M, O’Neill MT, Brown M, Chakravorty S, Szestak T, et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell. 2008;134:48–61.CrossRef Maier A, Rug M, O’Neill MT, Brown M, Chakravorty S, Szestak T, et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell. 2008;134:48–61.CrossRef
13.
go back to reference Rug M, Cyrklaff M, Mikkonen A, Lemgruber L, Kuelzer S, Sanchez CP, et al. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood. 2014;124:3459–68.CrossRef Rug M, Cyrklaff M, Mikkonen A, Lemgruber L, Kuelzer S, Sanchez CP, et al. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood. 2014;124:3459–68.CrossRef
14.
go back to reference Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood. 2002;99:1060–3.CrossRef Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood. 2002;99:1060–3.CrossRef
15.
go back to reference Sharma P, Bhargava M, Sukhachev D, Datta S, Wattal C. LH750 hematology analyzers to identify malaria and dengue and distinguish them from other febrile illnesses. Int J Lab Hematol. 2014;36:45–55.CrossRef Sharma P, Bhargava M, Sukhachev D, Datta S, Wattal C. LH750 hematology analyzers to identify malaria and dengue and distinguish them from other febrile illnesses. Int J Lab Hematol. 2014;36:45–55.CrossRef
16.
go back to reference Huh HJ, Oh GY, Huh JW, Chae SL. Malaria detection with the Sysmex XE-2100 hematology analyzer using pseudoeosinophilia and abnormal WBC scattergram. Ann Hematol. 2008;87:755–9.CrossRef Huh HJ, Oh GY, Huh JW, Chae SL. Malaria detection with the Sysmex XE-2100 hematology analyzer using pseudoeosinophilia and abnormal WBC scattergram. Ann Hematol. 2008;87:755–9.CrossRef
17.
go back to reference Campuzano-Zuluaga G, Alvarez-Sánchez G, Escobar-Gallo GE, Valencia-Zuluaga LM, Ríos-Orrego AM, Pabón-Vidal A, et al. Design of malaria diagnostic criteria for the Sysmex XE-2100 hematology analyzer. Am J Trop Med Hyg. 2010;82:402–11.CrossRef Campuzano-Zuluaga G, Alvarez-Sánchez G, Escobar-Gallo GE, Valencia-Zuluaga LM, Ríos-Orrego AM, Pabón-Vidal A, et al. Design of malaria diagnostic criteria for the Sysmex XE-2100 hematology analyzer. Am J Trop Med Hyg. 2010;82:402–11.CrossRef
18.
go back to reference Yoo JH, Song J, Lee KA, Sun YK, Kim YA, Park TS, et al. Automated detection of malaria-associated pseudoeosinophilia and abnormal WBC scattergram by the Sysmex XE-2100 hematology analyzer: a clinical study with 1801 patients and real-time quantitative PCR analysis in vivax malaria-endemic area. Am J Trop Med Hyg. 2010;82:412–4.CrossRef Yoo JH, Song J, Lee KA, Sun YK, Kim YA, Park TS, et al. Automated detection of malaria-associated pseudoeosinophilia and abnormal WBC scattergram by the Sysmex XE-2100 hematology analyzer: a clinical study with 1801 patients and real-time quantitative PCR analysis in vivax malaria-endemic area. Am J Trop Med Hyg. 2010;82:412–4.CrossRef
19.
go back to reference Buoro S, Manenti B, Seghezzi M, Moili V, Bagorria M, Callegaro A, et al. Abnormal scattergrams and cell population data generated by fully automated hematological analyzers: New tools for screening malaria infection? Int J Lab Hem. 2018;40:326–34.CrossRef Buoro S, Manenti B, Seghezzi M, Moili V, Bagorria M, Callegaro A, et al. Abnormal scattergrams and cell population data generated by fully automated hematological analyzers: New tools for screening malaria infection? Int J Lab Hem. 2018;40:326–34.CrossRef
20.
go back to reference Sun Y, Xiang D, Chen C, He S, Qi H, Wang C. Infected RBC flag/parameter provided by Mindray BC-6800 haematology analyzer aid the diagnosis of malaria. Malar J. 2019;18:262.CrossRef Sun Y, Xiang D, Chen C, He S, Qi H, Wang C. Infected RBC flag/parameter provided by Mindray BC-6800 haematology analyzer aid the diagnosis of malaria. Malar J. 2019;18:262.CrossRef
21.
go back to reference Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, White NJ, et al. The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J Infect Dis. 2004;189:190–4.CrossRef Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, White NJ, et al. The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J Infect Dis. 2004;189:190–4.CrossRef
22.
go back to reference Dhangadamajhi G, Kar SK, Ranjit M. The survival strategies of malaria parasite in the red blood cell and host cell polymorphisms. Malar Res Treat. 2010;2010:973094.PubMedPubMedCentral Dhangadamajhi G, Kar SK, Ranjit M. The survival strategies of malaria parasite in the red blood cell and host cell polymorphisms. Malar Res Treat. 2010;2010:973094.PubMedPubMedCentral
23.
go back to reference Tougan T, Suzuki Y, Itagaki S, Izuka M, Toya Y, Uchihashi K, Horii T. An automated haematology analyzer XN-30 distinguishes developmental stages of falciparum malaria parasites cultured in vitro. Malar J. 2018;17:59.CrossRef Tougan T, Suzuki Y, Itagaki S, Izuka M, Toya Y, Uchihashi K, Horii T. An automated haematology analyzer XN-30 distinguishes developmental stages of falciparum malaria parasites cultured in vitro. Malar J. 2018;17:59.CrossRef
24.
go back to reference Post A, Kaboré B, Reuling IJ, Bognini J, Van der Heijden W, Diallo S, et al. The XN-30 hematology analyzer for rapid sensitive detection of malaria: a diagnostic accuracy study. BMC Med. 2019;17:103.CrossRef Post A, Kaboré B, Reuling IJ, Bognini J, Van der Heijden W, Diallo S, et al. The XN-30 hematology analyzer for rapid sensitive detection of malaria: a diagnostic accuracy study. BMC Med. 2019;17:103.CrossRef
25.
go back to reference Pillay E, Khodaiji S, Bezuidenhout BC, Litshie M, Coetzer TL. Evaluation of automated malaria diagnosis using the Sysmex XN-30 analyser in a clinical setting. Malar J. 2019;18:15.CrossRef Pillay E, Khodaiji S, Bezuidenhout BC, Litshie M, Coetzer TL. Evaluation of automated malaria diagnosis using the Sysmex XN-30 analyser in a clinical setting. Malar J. 2019;18:15.CrossRef
26.
go back to reference Jadhav S, Oswal J. Automated cellular indices to identify dengue and malaria and distinguish them from other febrile illnesses. Int J Curr Adv Res. 2018;7:12176–90. Jadhav S, Oswal J. Automated cellular indices to identify dengue and malaria and distinguish them from other febrile illnesses. Int J Curr Adv Res. 2018;7:12176–90.
27.
go back to reference Briggs C, Da Costa A, Freeman L, Aucamp I, Ngubeni B, Machin SJ. Development of an automated malaria discriminant factor using VCS technology. Am J Clin Pathol. 2006;126:691–8.CrossRef Briggs C, Da Costa A, Freeman L, Aucamp I, Ngubeni B, Machin SJ. Development of an automated malaria discriminant factor using VCS technology. Am J Clin Pathol. 2006;126:691–8.CrossRef
28.
go back to reference Dharap P, Raimbault S, Arnavielhe S, Dray G, Janaqi S, Plantie M, et al. Validation of HORIBA Medical Pentra 80XL/XLR and MicrosemiCRP malaria flag performance derived from algorithmic data-mining techniques. Int J Lab Hem. 2017;39(suppl. 2):33. Dharap P, Raimbault S, Arnavielhe S, Dray G, Janaqi S, Plantie M, et al. Validation of HORIBA Medical Pentra 80XL/XLR and MicrosemiCRP malaria flag performance derived from algorithmic data-mining techniques. Int J Lab Hem. 2017;39(suppl. 2):33.
29.
go back to reference Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev. 1990;3:376–9.CrossRef Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev. 1990;3:376–9.CrossRef
30.
go back to reference Potts JA, Rothman AL. Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. Trop Med Int Health. 2008;13:1328–40.CrossRef Potts JA, Rothman AL. Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. Trop Med Int Health. 2008;13:1328–40.CrossRef
31.
go back to reference Castillo JA, Naranjo JS, Rojas M, Castaño D, Velila PA. Role of monocytes in the pathogenesis of dengue. Arch Immunol Ther Exp. 2019;67:27–40.CrossRef Castillo JA, Naranjo JS, Rojas M, Castaño D, Velila PA. Role of monocytes in the pathogenesis of dengue. Arch Immunol Ther Exp. 2019;67:27–40.CrossRef
32.
go back to reference Chaloemwong J, Tantiworawit A, Rattanathammethee T, Hantrakool S, Chai-Adisaksopha C, Rattarittamrong E, et al. Useful clinical features and hematological parameters for the diagnosis of dengue infection in patients with acute febrile illness: a retrospective study. BMC Hematol. 2018;18:20.CrossRef Chaloemwong J, Tantiworawit A, Rattanathammethee T, Hantrakool S, Chai-Adisaksopha C, Rattarittamrong E, et al. Useful clinical features and hematological parameters for the diagnosis of dengue infection in patients with acute febrile illness: a retrospective study. BMC Hematol. 2018;18:20.CrossRef
33.
go back to reference Soto R, Irizzary F. Combination of quantitative and morphologic monocyte parameters enhances the performance of the Cbc-differential in the detection of dengue fever. Int J Lab Hem. 2011;33(Suppl. 1):Abstract 145. Soto R, Irizzary F. Combination of quantitative and morphologic monocyte parameters enhances the performance of the Cbc-differential in the detection of dengue fever. Int J Lab Hem. 2011;33(Suppl. 1):Abstract 145.
34.
go back to reference Zhu Y, Cao X, Tao G, Xie W, Hu Z, Xu D. The lymph index: a potential hematological parameter for viral infection. Int J Infect Dis. 2013;17:e490–3.CrossRef Zhu Y, Cao X, Tao G, Xie W, Hu Z, Xu D. The lymph index: a potential hematological parameter for viral infection. Int J Infect Dis. 2013;17:e490–3.CrossRef
35.
go back to reference Hawaldar R, Sodani S. Evaluation of LH 750 VCS parameters and lymph Index in identifying Dengue fever. Indian J Pathol Oncol. 2015;2:76–80. Hawaldar R, Sodani S. Evaluation of LH 750 VCS parameters and lymph Index in identifying Dengue fever. Indian J Pathol Oncol. 2015;2:76–80.
36.
go back to reference Jaykar HH, Kelkar AJ, Mani NS. Applicability of volume conductivity and scatter parameters for early prediction of dengue virus infection. J Appl Hematol. 2018;9:1–4.CrossRef Jaykar HH, Kelkar AJ, Mani NS. Applicability of volume conductivity and scatter parameters for early prediction of dengue virus infection. J Appl Hematol. 2018;9:1–4.CrossRef
37.
go back to reference Justin J, Suman FR, Sukhachev D, Naveen K, Rajendran R, Lakshmi U. Utility of cell population data as an early predictor of dengue. Saudi J Pathol Microbiol. 2018;3:135–9. Justin J, Suman FR, Sukhachev D, Naveen K, Rajendran R, Lakshmi U. Utility of cell population data as an early predictor of dengue. Saudi J Pathol Microbiol. 2018;3:135–9.
38.
go back to reference Potts JA, Gibbons RV, Rothman AL, Srikiatkhachorn A, Thomas SJ, Supradish PO, et al. Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators. PLoS Negl Trop Dis. 2010;4:e769.CrossRef Potts JA, Gibbons RV, Rothman AL, Srikiatkhachorn A, Thomas SJ, Supradish PO, et al. Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators. PLoS Negl Trop Dis. 2010;4:e769.CrossRef
39.
go back to reference Wright MN, Ziegler A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.CrossRef Wright MN, Ziegler A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.CrossRef
Metadata
Title
Performance evaluation of machine learning-based infectious screening flags on the HORIBA Medical Yumizen H550 Haematology Analyzer for vivax malaria and dengue fever
Authors
Parag Dharap
Sebastien Raimbault
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03502-3

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.