Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

Evaluating the impact of larviciding with Bti and community education and mobilization as supplementary integrated vector management interventions for malaria control in Kenya and Ethiopia

Authors: Clifford M. Mutero, Collins Okoyo, Melaku Girma, Joseph Mwangangi, Lydia Kibe, Peter Ng’ang’a, Dereje Kussa, Gracious Diiro, Hippolyte Affognon, Charles M. Mbogo

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Malaria prevention in Africa is mainly through the use of long-lasting insecticide treated nets (LLINs). The objective of the study was to assess the effect of supplementing LLINs with either larviciding with Bacillus thuringiensis israelensis (Bti) or community education and mobilization (CEM), or with both interventions in the context of integrated vector management (IVM).

Methods

The study involved a factorial, cluster-randomized, controlled trial conducted in Malindi and Nyabondo sites in Kenya and Tolay site in Ethiopia, to assess the impact of the following four intervention options on mosquitoes and malaria prevalence: LLINs only (arm 1); LLINs and Bti (arm 2); LLINs and CEM (arm 3); and, LLINs combined with Bti and CEM (arm 4). Between January 2013 and December 2015, CDC light traps were used to sample adult mosquitoes during the second, third and fourth quarter of each year in 10 houses in each of 16 villages at each of the three study sites. Larvae were sampled once a fortnight from potential mosquito-breeding habitats using standard plastic dippers. Cross-sectional malaria parasite prevalence surveys were conducted involving a total of 11,846 primary school children during the 3-year period, including 4800 children in Tolay, 3000 in Malindi and 4046 in Nyabondo study sites.

Results

Baseline relative indoor anopheline density was 0.11, 0.05 and 0.02 mosquitoes per house per night in Malindi, Tolay and Nyabondo sites, respectively. Nyabondo had the highest recorded overall average malaria prevalence among school children at 32.4%, followed by Malindi with 5.7% and Tolay 1.7%. There was no significant reduction in adult anopheline density at each of the three sites, which could be attributed to adding of the supplementary interventions to the usage of LLINs. Malaria prevalence was significantly reduced by 50% in Tolay when using LLINs coupled with application of Bti, community education and mobilization. The two other sites did not reveal significant reduction of prevalence as a result of combining LLINs with any of the other supplementary interventions.

Conclusion

Combining LLINs with larviciding with Bti and CEM further reduced malaria infection in a low prevalence setting in Ethiopia, but not at sites with relatively higher prevalence in Kenya. More research is necessary at the selected sites in Kenya to periodically determine the suite of vector control interventions and broader disease management strategies, which when integrated would further reduce adult anopheline populations and malaria prevalence beyond what is achieved with LLINs.
Literature
1.
go back to reference WHO/UNICEF. Achieving the Malaria MDG Target: reversing the incidence of malaria 2000–2015. Geneva: World Health Organization; 2015. WHO/UNICEF. Achieving the Malaria MDG Target: reversing the incidence of malaria 2000–2015. Geneva: World Health Organization; 2015.
2.
go back to reference WHO. World Malaria Report 2018. Geneva: World Health Organization; 2018. WHO. World Malaria Report 2018. Geneva: World Health Organization; 2018.
3.
go back to reference Kenya MOH. Kenya Malaria Indicator Survey 2015. Nairobi: National Malaria Control Programme, Ministry of Health; 2016. Kenya MOH. Kenya Malaria Indicator Survey 2015. Nairobi: National Malaria Control Programme, Ministry of Health; 2016.
4.
go back to reference Ethiopia MOH. Ethiopia National Malaria Indicator Survey 2015. Addis Ababa: Ethiopian Public Health Institute, Ministry of Health; 2016. Ethiopia MOH. Ethiopia National Malaria Indicator Survey 2015. Addis Ababa: Ethiopian Public Health Institute, Ministry of Health; 2016.
5.
go back to reference Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, et al. Changing malaria prevalence on the Kenyan Coast since 1974: climate, drugs and vector control. PLoS ONE. 2015;10:e0128792.CrossRef Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, et al. Changing malaria prevalence on the Kenyan Coast since 1974: climate, drugs and vector control. PLoS ONE. 2015;10:e0128792.CrossRef
6.
go back to reference Tusting L, Willey B, Lucas H, Thompson J, Kafy HT, Smith R, et al. Socioeconomic development as an intervention against malaria: a systematic review and meta-analysis. Lancet. 2013;382:963–72.CrossRef Tusting L, Willey B, Lucas H, Thompson J, Kafy HT, Smith R, et al. Socioeconomic development as an intervention against malaria: a systematic review and meta-analysis. Lancet. 2013;382:963–72.CrossRef
7.
go back to reference Meyrowitsch DW, Pedersen EM, Alifrangis M, Scheike TH, Malecela MN, Magesa SM, et al. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population? Malar J. 2011;10:188.CrossRef Meyrowitsch DW, Pedersen EM, Alifrangis M, Scheike TH, Malecela MN, Magesa SM, et al. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population? Malar J. 2011;10:188.CrossRef
8.
go back to reference Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRef Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRef
9.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRef Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRef
10.
go back to reference Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Phil Trans R Soc B. 2014;369:20130431.CrossRef Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Phil Trans R Soc B. 2014;369:20130431.CrossRef
11.
go back to reference Leach-Kemon K, Chou DP, Schneider MT, Tardif A, Dielman JL, Brooks BPC, et al. The global financial crisis has led to a slowdown in growth of funding to improve health in many developing countries. Health Aff. 2012;31:228–35.CrossRef Leach-Kemon K, Chou DP, Schneider MT, Tardif A, Dielman JL, Brooks BPC, et al. The global financial crisis has led to a slowdown in growth of funding to improve health in many developing countries. Health Aff. 2012;31:228–35.CrossRef
12.
go back to reference WHO. Global Strategic Framework for Integrated Vector Management. Geneva: World Health Organization; 2004. WHO. Global Strategic Framework for Integrated Vector Management. Geneva: World Health Organization; 2004.
13.
go back to reference Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ. Integrated vector management for malaria control. Malar J. 2008;7(Suppl 1):S4.CrossRef Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ. Integrated vector management for malaria control. Malar J. 2008;7(Suppl 1):S4.CrossRef
14.
go back to reference WHO. Global Vector Control Response 2017–2030. Geneva: World Health Organization; 2017. WHO. Global Vector Control Response 2017–2030. Geneva: World Health Organization; 2017.
15.
go back to reference Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, Mabunda SJ, et al. Combining indoor residual spraying and insecticide-treated net interventions. Am J Trop Med Hyg. 2009;81:519–24.CrossRef Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, Mabunda SJ, et al. Combining indoor residual spraying and insecticide-treated net interventions. Am J Trop Med Hyg. 2009;81:519–24.CrossRef
16.
go back to reference Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:208.CrossRef Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:208.CrossRef
17.
go back to reference Kirby MJ, Ameh D, Green C, Jawara M, Milligan PJ, Bottomley C, Snell PC, Conway DJ, Lindsay SW. Efficacy of two different house screening interventions against exposure to malaria and anaemia in children in The Gambia: a randomized controlled trial. Lancet. 2009;374:998–1009.CrossRef Kirby MJ, Ameh D, Green C, Jawara M, Milligan PJ, Bottomley C, Snell PC, Conway DJ, Lindsay SW. Efficacy of two different house screening interventions against exposure to malaria and anaemia in children in The Gambia: a randomized controlled trial. Lancet. 2009;374:998–1009.CrossRef
18.
go back to reference Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRef Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRef
19.
go back to reference Mutero C, Mbogo C, Mwangangi J, Imbahale S, Kibe L, Orindi B, et al. An assessment of participatory integrated vector management for malaria control in Kenya. Environ Health Perspect. 2015;123:1145–51.CrossRef Mutero C, Mbogo C, Mwangangi J, Imbahale S, Kibe L, Orindi B, et al. An assessment of participatory integrated vector management for malaria control in Kenya. Environ Health Perspect. 2015;123:1145–51.CrossRef
20.
go back to reference Imbahale S, Mukabana WR. Efficacy of neem chippings for mosquito larval control under field conditions. BMC Ecol. 2015;25:8.CrossRef Imbahale S, Mukabana WR. Efficacy of neem chippings for mosquito larval control under field conditions. BMC Ecol. 2015;25:8.CrossRef
21.
go back to reference Demissew A, Balkew M, Girma M. Larvicidal activity of chinaberry, neem and Bti to an insecticide resistant population of Anopheles arabiensis from Tolay, South West Ethiopia. Asian Pac J Trop Biomed. 2016;6:554–61.CrossRef Demissew A, Balkew M, Girma M. Larvicidal activity of chinaberry, neem and Bti to an insecticide resistant population of Anopheles arabiensis from Tolay, South West Ethiopia. Asian Pac J Trop Biomed. 2016;6:554–61.CrossRef
22.
go back to reference Macintyre K, Keating J, Sosler S, Kibe L, Mbogo CM, Githeko AK, et al. Examining the determinants of mosquito-avoidance practices in two Kenyan cities. Malar J. 2002;1:14.CrossRef Macintyre K, Keating J, Sosler S, Kibe L, Mbogo CM, Githeko AK, et al. Examining the determinants of mosquito-avoidance practices in two Kenyan cities. Malar J. 2002;1:14.CrossRef
23.
go back to reference Kibe LW, Mbogo CM, Keating J, Molyneux S, Githure JI, Beier JC. Community based vector control in Malindi, Kenya. Afr Health Sci. 2006;6:240–6. Kibe LW, Mbogo CM, Keating J, Molyneux S, Githure JI, Beier JC. Community based vector control in Malindi, Kenya. Afr Health Sci. 2006;6:240–6.
24.
go back to reference Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, Mbogo CM. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi. Kenya. Parasitol Res. 2011;108:1355–63.CrossRef Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, Mbogo CM. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi. Kenya. Parasitol Res. 2011;108:1355–63.CrossRef
25.
go back to reference ICIPE 2012. Report of the comprehensive evaluation of the Biovision-ICIPE IVM projects in Kenya and Ethiopia. Nairobi. International Centre of Insect Physiology and Ecology; 2012. ICIPE 2012. Report of the comprehensive evaluation of the Biovision-ICIPE IVM projects in Kenya and Ethiopia. Nairobi. International Centre of Insect Physiology and Ecology; 2012.
26.
go back to reference Imbahale SS, Abonyo OK, Aduogo OP, Githure IJ, Mukabana WR. Conflict between the need for income and the necessity of controlling endemic malaria. J Ecosys Ecograph. 2013;3:129. Imbahale SS, Abonyo OK, Aduogo OP, Githure IJ, Mukabana WR. Conflict between the need for income and the necessity of controlling endemic malaria. J Ecosys Ecograph. 2013;3:129.
27.
go back to reference Ng’ang’a PN, Okoyo C, Mbogo C, Mutero CM. Evaluating effectiveness of screening house eaves as an intervention for integrated vector management for malaria control in a rural area of Western Kenya. Malar J. 2020;19:341.CrossRef Ng’ang’a PN, Okoyo C, Mbogo C, Mutero CM. Evaluating effectiveness of screening house eaves as an intervention for integrated vector management for malaria control in a rural area of Western Kenya. Malar J. 2020;19:341.CrossRef
28.
go back to reference WHO. Methods for achieving universal coverage with long-lasting insecticidal nets in malaria control. Report to MPAC. Geneva. Vector Control Technical Expert Group. World Health Organization; 2013. WHO. Methods for achieving universal coverage with long-lasting insecticidal nets in malaria control. Report to MPAC. Geneva. Vector Control Technical Expert Group. World Health Organization; 2013.
29.
go back to reference Zhou G, Li JS, Ototo EN, Atieli HE, Githeko AK, Yan G. Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys. Malar J. 2014;13:351.CrossRef Zhou G, Li JS, Ototo EN, Atieli HE, Githeko AK, Yan G. Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys. Malar J. 2014;13:351.CrossRef
30.
go back to reference Thomas CJ, Cross DE, Bøgh C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE. 2013;8:e68679.CrossRef Thomas CJ, Cross DE, Bøgh C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE. 2013;8:e68679.CrossRef
32.
go back to reference WHO. How to design vector control efficacy trials, guidance on phase III vector control field trial design. Geneva: World Health Organization; 2017. WHO. How to design vector control efficacy trials, guidance on phase III vector control field trial design. Geneva: World Health Organization; 2017.
33.
go back to reference Kramer RA, Mboera LEG, Senkoro K, Lesser A, Shayo EH, Paul CJ, et al. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania. Int J Environ Res Public Health. 2014;11:5317–32.CrossRef Kramer RA, Mboera LEG, Senkoro K, Lesser A, Shayo EH, Paul CJ, et al. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania. Int J Environ Res Public Health. 2014;11:5317–32.CrossRef
34.
go back to reference Benjamin-Chung J, Arnold BF, Berger D, Luby SP, Miguel E, Colfor JM Jr, et al. Spillover effects in epidemiology: parameters, study designs and methodological considerations. Int J Epidemiol. 2018;47:332–47.CrossRef Benjamin-Chung J, Arnold BF, Berger D, Luby SP, Miguel E, Colfor JM Jr, et al. Spillover effects in epidemiology: parameters, study designs and methodological considerations. Int J Epidemiol. 2018;47:332–47.CrossRef
35.
go back to reference Service MW. Mosquito ecology. Field sampling methods. 2nd ed. London: Elsevier Chapman and Hall; 1993.CrossRef Service MW. Mosquito ecology. Field sampling methods. 2nd ed. London: Elsevier Chapman and Hall; 1993.CrossRef
36.
go back to reference Gillies MT, De Meillon B. The Anopheline of Africa South of the Sahara (Ethiopian Zoogeographical region). Publications of the South African Institute for Medical Research; 1968. Gillies MT, De Meillon B. The Anopheline of Africa South of the Sahara (Ethiopian Zoogeographical region). Publications of the South African Institute for Medical Research; 1968.
37.
go back to reference Mboera LEG, Kihonda J, Braks MA, Knols BGJ. Influence of Centers for Disease Control light trap position, relative to a human-baited bednet, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg. 1998;59:595–6.CrossRef Mboera LEG, Kihonda J, Braks MA, Knols BGJ. Influence of Centers for Disease Control light trap position, relative to a human-baited bednet, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg. 1998;59:595–6.CrossRef
38.
go back to reference Paskewitz SM, Collins FH. Use of the polymerase chain reaction to identify mosquito species of the Anopheles gambiae complex. Med Vet Entomol. 1990;4:367–73.CrossRef Paskewitz SM, Collins FH. Use of the polymerase chain reaction to identify mosquito species of the Anopheles gambiae complex. Med Vet Entomol. 1990;4:367–73.CrossRef
39.
go back to reference Scott JA, Brodgon WG, Collins FH. Identification of single specimens of Anopheles gambiae complex by polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRef Scott JA, Brodgon WG, Collins FH. Identification of single specimens of Anopheles gambiae complex by polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRef
40.
go back to reference Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction (PCR) assay to identify the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;6:78–83. Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction (PCR) assay to identify the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;6:78–83.
41.
go back to reference Drakeley C, Abdulla S, Agnandji ST, Fernandes JF, Kremsner P, et al. Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries. Malar J. 2017;16:433.CrossRef Drakeley C, Abdulla S, Agnandji ST, Fernandes JF, Kremsner P, et al. Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries. Malar J. 2017;16:433.CrossRef
42.
go back to reference Gitonga CW, Karanja PN, Kihara J, Mwanje M, Juma E, Snow RW, et al. Implementing school malaria surveys in Kenya: towards a national surveillance system. Malar J. 2010;9:306.CrossRef Gitonga CW, Karanja PN, Kihara J, Mwanje M, Juma E, Snow RW, et al. Implementing school malaria surveys in Kenya: towards a national surveillance system. Malar J. 2010;9:306.CrossRef
43.
go back to reference Gitonga CW, Kihara JH, Njenga SM, Awuondo K, Noor AM, Snow RW, et al. Use of rapid diagnostic tests in malaria school surveys in Kenya: does their under-performance matter for planning malaria control? Am J Trop Med Hyg. 2012;87:1004–11.CrossRef Gitonga CW, Kihara JH, Njenga SM, Awuondo K, Noor AM, Snow RW, et al. Use of rapid diagnostic tests in malaria school surveys in Kenya: does their under-performance matter for planning malaria control? Am J Trop Med Hyg. 2012;87:1004–11.CrossRef
44.
go back to reference Wickham H. Ggplot2: elegant graphics for data analysis. Berlin: Springer; 2009.CrossRef Wickham H. Ggplot2: elegant graphics for data analysis. Berlin: Springer; 2009.CrossRef
45.
go back to reference Mutero CM, Schlodder D, Kabatereine N, Kramer R. Integrated vector management for malaria control in Uganda: knowledge, perceptions and policy development. Malar J. 2012;11:21.CrossRef Mutero CM, Schlodder D, Kabatereine N, Kramer R. Integrated vector management for malaria control in Uganda: knowledge, perceptions and policy development. Malar J. 2012;11:21.CrossRef
46.
go back to reference Choi L, Majambere S, Wilson AL. Larviciding to prevent malaria transmission. Cochrane Database Syst Rev. 2019;8:CD012736. Choi L, Majambere S, Wilson AL. Larviciding to prevent malaria transmission. Cochrane Database Syst Rev. 2019;8:CD012736.
47.
go back to reference Brady OJ, Godfray HCJ, Tatem AJ, Gething PW. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRef Brady OJ, Godfray HCJ, Tatem AJ, Gething PW. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRef
48.
go back to reference Monroe A, Moore S, Koenker H, Lynch M, Ricotta E. Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub-Saharan Africa: a review of the published literature. Malar J. 2019;18:6.CrossRef Monroe A, Moore S, Koenker H, Lynch M, Ricotta E. Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub-Saharan Africa: a review of the published literature. Malar J. 2019;18:6.CrossRef
49.
go back to reference Dambachet P, Louis VR, Kaiser A, Quedraogo S, Sié A, Sauerbron R, et al. Efficacy of Bacillus thuringiensis var. israelensis against malaria mosquitoes in north-western Burkina Faso. Parasit Vectors. 2014;7:371.CrossRef Dambachet P, Louis VR, Kaiser A, Quedraogo S, Sié A, Sauerbron R, et al. Efficacy of Bacillus thuringiensis var. israelensis against malaria mosquitoes in north-western Burkina Faso. Parasit Vectors. 2014;7:371.CrossRef
50.
go back to reference WHO. Larval source management: a supplementary measure for malaria vector control. An operational manual. Geneva: World Health Organization; 2013. WHO. Larval source management: a supplementary measure for malaria vector control. An operational manual. Geneva: World Health Organization; 2013.
51.
go back to reference Kenea O, Balkew M, Tekie H, Deressa W, Loha E, Lindtjørn B, et al. Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial. Malar J. 2019;18:182.CrossRef Kenea O, Balkew M, Tekie H, Deressa W, Loha E, Lindtjørn B, et al. Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial. Malar J. 2019;18:182.CrossRef
52.
go back to reference Loha E, Deressa W, Gari T, Balkew M, Kenea O, Solomon T, et al. Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: results from a cluster randomized controlled trial in Ethiopia. Malar J. 2019;18:141.CrossRef Loha E, Deressa W, Gari T, Balkew M, Kenea O, Solomon T, et al. Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: results from a cluster randomized controlled trial in Ethiopia. Malar J. 2019;18:141.CrossRef
53.
go back to reference Kebede Y, Abebe L, Alemayehu G, Sudhakar M, Birhanu Z. Effectiveness of peer-learning assisted primary school students educating the rural community on insecticide-treated nets utilization in Jimma-zone Ethiopia. Malar J. 2020;19:331.CrossRef Kebede Y, Abebe L, Alemayehu G, Sudhakar M, Birhanu Z. Effectiveness of peer-learning assisted primary school students educating the rural community on insecticide-treated nets utilization in Jimma-zone Ethiopia. Malar J. 2020;19:331.CrossRef
54.
go back to reference VanderWeele TJ, Hong G, Jones SM, Brown JL. Mediation and spillover effects in group-randomized trials: a case study of the 4Rs educational intervention. J Am Stat Assoc. 2013;108:469–82.CrossRef VanderWeele TJ, Hong G, Jones SM, Brown JL. Mediation and spillover effects in group-randomized trials: a case study of the 4Rs educational intervention. J Am Stat Assoc. 2013;108:469–82.CrossRef
55.
go back to reference USAID. Malaria in Kenya. Washington: USAID Knowledge Services Centre; 2008. USAID. Malaria in Kenya. Washington: USAID Knowledge Services Centre; 2008.
56.
go back to reference Jenkins R, Omollo R, Ongecha M, Sifuna P, Othieno C, Ongeri L, et al. Prevalence of malaria parasites in adults and its determinants in malaria endemic area of Kisumu County, Kenya. Malar J. 2015;4:263.CrossRef Jenkins R, Omollo R, Ongecha M, Sifuna P, Othieno C, Ongeri L, et al. Prevalence of malaria parasites in adults and its determinants in malaria endemic area of Kisumu County, Kenya. Malar J. 2015;4:263.CrossRef
57.
go back to reference Idris ZM, Chan CW, Kongere J, Gitaka J, Logedi J, Omar A, et al. High and heterogeneous prevalence of asymptomatic and sub-microscopic malaria infections on islands in Lake Victoria, Kenya. Sci Rep. 2016;6:36958.CrossRef Idris ZM, Chan CW, Kongere J, Gitaka J, Logedi J, Omar A, et al. High and heterogeneous prevalence of asymptomatic and sub-microscopic malaria infections on islands in Lake Victoria, Kenya. Sci Rep. 2016;6:36958.CrossRef
58.
go back to reference WHO. A tool kit for integrated vector management in sub-Saharan Africa. Geneva: World Health Organization; 2016. WHO. A tool kit for integrated vector management in sub-Saharan Africa. Geneva: World Health Organization; 2016.
Metadata
Title
Evaluating the impact of larviciding with Bti and community education and mobilization as supplementary integrated vector management interventions for malaria control in Kenya and Ethiopia
Authors
Clifford M. Mutero
Collins Okoyo
Melaku Girma
Joseph Mwangangi
Lydia Kibe
Peter Ng’ang’a
Dereje Kussa
Gracious Diiro
Hippolyte Affognon
Charles M. Mbogo
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03464-6

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue