Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial

Authors: Oljira Kenea, Meshesha Balkew, Habte Tekie, Wakgari Deressa, Eskindir Loha, Bernt Lindtjørn, Hans J. Overgaard

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Indoor residual house spraying (IRS) and long-lasting insecticidal nets (LLINs) are the key front-line malaria vector interventions against Anopheles arabiensis, the sole primary malaria vector in Ethiopia. Universal coverage of both interventions has been promoted and there is a growing demand in combinations of interventions for malaria control and elimination. This study compared the impact on entomological outcomes of combining IRS and LLINs with either intervention alone in Adami Tullu district, south-central Ethiopia. The epidemiological outcomes were recently published on a separate paper.

Methods

This factorial, cluster-randomized, controlled trial randomized villages to four study arms: IRS + LLIN, IRS, LLIN, and control. LLINs (PermaNet 2.0) were provided free of charge. IRS with propoxur was applied before the main malaria transmission season in 2014, 2015 and 2016. Adult mosquitoes were collected in randomly selected villages in each arm using CDC light trap catch (LTC) set close to a sleeping person, pyrethrum spray catch (PSC), and artificial pit shelter (PIT), for measuring mosquito host-seeking density (HSD), indoor resting density (IRD), and outdoor resting density (ORD), respectively. Human landing catch (HLC) was performed in a sub-set of villages to monitor An. arabiensis human biting rates (HBR). Mean vector densities and HBR were compared among study arms using incidence rate ratio (IRR) calculated by negative binomial regression.

Results

There were no significant differences in mean densities (HSD, IRD, ORD) and HBR of An. arabiensis between the IRS + LLIN arm and the IRS arm (p > 0.05). However, mean HSD, IRD, ORD, and HBR were significantly lower in the IRS + LLIN arm than in the LLIN alone arm (p < 0.05). All An. arabiensis tested for malaria infection were negative for Plasmodium species. For this reason, the entomological inoculation rate could not be determined.

Conclusions

The IRS + LLIN were as effective as IRS alone in reducing densities and HBR of An. arabiensis. However, the effectiveness of the two interventions combined was higher than LLINs alone in reducing densities and HBR of the vector. Added impact of the combination intervention against malaria infectivity rates of An. arabiensis compared to either intervention alone remains unknown and warrants further research.
Trial registration PACTR201411000882128. Registered 8 September 2014, https://​trialsjournal.​biomedcentral.​com/​articles/​10.​1186/​s13063-016-1154-2
Literature
1.
go back to reference Deribew A, Dejene T, Kebede B, Tessema GA, Melaku YA, Misganaw A, et al. Incidence, prevalence and mortality rates of malaria in Ethiopia from 1990 to 2015: analysis of the global burden of diseases 2015. Malar J. 2017;16:271.CrossRefPubMedPubMedCentral Deribew A, Dejene T, Kebede B, Tessema GA, Melaku YA, Misganaw A, et al. Incidence, prevalence and mortality rates of malaria in Ethiopia from 1990 to 2015: analysis of the global burden of diseases 2015. Malar J. 2017;16:271.CrossRefPubMedPubMedCentral
2.
go back to reference WHO. World Malaria Report 2016. Geneva: World Health Organization; 2016. WHO. World Malaria Report 2016. Geneva: World Health Organization; 2016.
3.
go back to reference Abeku TA, Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema JDF. Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Trop. 2003;7:331–40.CrossRef Abeku TA, Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema JDF. Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Trop. 2003;7:331–40.CrossRef
4.
go back to reference Abose T, Ye-Ebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Re-Orientation and definition of the role of malaria vector control in Ethiopia; the epidemiology and control of malaria with special emphasis to the distribution, behavior and susceptibility to insecticides of anopheline vectors and chloroquine resistance in Ziway, Central Ethiopia and other areas. Geneva: Malaria Prevention and Control Programme, World Health Organization; 1998. Abose T, Ye-Ebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Re-Orientation and definition of the role of malaria vector control in Ethiopia; the epidemiology and control of malaria with special emphasis to the distribution, behavior and susceptibility to insecticides of anopheline vectors and chloroquine resistance in Ziway, Central Ethiopia and other areas. Geneva: Malaria Prevention and Control Programme, World Health Organization; 1998.
5.
go back to reference Ministry of Health. National malaria strategic plan (2014–2020). Addis Ababa: Federal Democratic Republic of Ethiopia; 2014. Ministry of Health. National malaria strategic plan (2014–2020). Addis Ababa: Federal Democratic Republic of Ethiopia; 2014.
6.
go back to reference WHO. World malaria report 2014. Geneva: World Health Organization; 2014. WHO. World malaria report 2014. Geneva: World Health Organization; 2014.
7.
go back to reference Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, et al. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis. 2012;12:617–26.CrossRefPubMed Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, et al. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis. 2012;12:617–26.CrossRefPubMed
8.
go back to reference Pinder M, Jawara M, Jarju LBS, Salami K, Jeffries D, Adiamoh M, et al. Efficacy of indoor residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian communities with high usage of long-lasting insecticidal mosquito nets: a cluster-randomised controlled trial. Lancet Infect Dis. 2014;385:1436–46. Pinder M, Jawara M, Jarju LBS, Salami K, Jeffries D, Adiamoh M, et al. Efficacy of indoor residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian communities with high usage of long-lasting insecticidal mosquito nets: a cluster-randomised controlled trial. Lancet Infect Dis. 2014;385:1436–46.
9.
go back to reference Protopopoff N, Wright A, West PA, Tigererwa R, Mosha PW, Kisinza, et al. Combination of insecticide treated nets and indoor residual spraying in northern Tanzania provides additional reduction in vector population density and malaria transmission rates compared to insecticide treated nets alone: a randomised control trial. PLoS ONE. 2015;10:e0142671.CrossRefPubMedPubMedCentral Protopopoff N, Wright A, West PA, Tigererwa R, Mosha PW, Kisinza, et al. Combination of insecticide treated nets and indoor residual spraying in northern Tanzania provides additional reduction in vector population density and malaria transmission rates compared to insecticide treated nets alone: a randomised control trial. PLoS ONE. 2015;10:e0142671.CrossRefPubMedPubMedCentral
10.
go back to reference West PA, Protopopoff N, Wright A, Kivaju Z, Tigererwa R, Mosha F, et al. Indoor residual house spraying in combination with insecticide treated nets compared to insecticide treated nets alone for protection against malaria: results of a cluster randomised trial in Tanzania. PLoS Med. 2014;11:e1001630.CrossRefPubMedPubMedCentral West PA, Protopopoff N, Wright A, Kivaju Z, Tigererwa R, Mosha F, et al. Indoor residual house spraying in combination with insecticide treated nets compared to insecticide treated nets alone for protection against malaria: results of a cluster randomised trial in Tanzania. PLoS Med. 2014;11:e1001630.CrossRefPubMedPubMedCentral
11.
go back to reference Loha E, Deressa W, Gari T, Balkew M, Kenea O, Solomon T, et al. Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: results from a cluster randomized controlled trial in Ethiopia. Malar J. 2019;18:141.CrossRefPubMedPubMedCentral Loha E, Deressa W, Gari T, Balkew M, Kenea O, Solomon T, et al. Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: results from a cluster randomized controlled trial in Ethiopia. Malar J. 2019;18:141.CrossRefPubMedPubMedCentral
12.
go back to reference Deressa W, Loha E, Balkew M, Desalegne A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: study protocol for a cluster randomized controlled trial. Trials. 2016;17:20.CrossRefPubMedPubMedCentral Deressa W, Loha E, Balkew M, Desalegne A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: study protocol for a cluster randomized controlled trial. Trials. 2016;17:20.CrossRefPubMedPubMedCentral
13.
go back to reference Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.CrossRefPubMedPubMedCentral Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.CrossRefPubMedPubMedCentral
14.
go back to reference Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors. 2016;9:527.CrossRefPubMedPubMedCentral Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors. 2016;9:527.CrossRefPubMedPubMedCentral
15.
go back to reference Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Comparison of two adult mosquito sampling methods with human landing catches in south central Ethiopia. Malar J. 2017;16:30.CrossRefPubMedPubMedCentral Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Comparison of two adult mosquito sampling methods with human landing catches in south central Ethiopia. Malar J. 2017;16:30.CrossRefPubMedPubMedCentral
16.
go back to reference Hwang J, Alemayehu BH, Hoos D, Melaku Z, Tekleyohannes SG, Teshi T, et al. In vivo efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria in Central Ethiopia. Malar J. 2011;10:209.CrossRefPubMedPubMedCentral Hwang J, Alemayehu BH, Hoos D, Melaku Z, Tekleyohannes SG, Teshi T, et al. In vivo efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria in Central Ethiopia. Malar J. 2011;10:209.CrossRefPubMedPubMedCentral
17.
go back to reference Ministry of Health, Federal Democratic Republic of Ethiopia, Ministry of Health (MOH). National malaria guidelines. Addis Ababa: Ministry of Health, Federal Democratic Republic of Ethiopia, Ministry of Health (MOH); 2012. Ministry of Health, Federal Democratic Republic of Ethiopia, Ministry of Health (MOH). National malaria guidelines. Addis Ababa: Ministry of Health, Federal Democratic Republic of Ethiopia, Ministry of Health (MOH); 2012.
18.
go back to reference Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, et al. Blood meal identification by direct enzyme-linked immunosorbent assay tested on Anopheles in Kenya. J Med Entomol. 1988;25:9–15.CrossRefPubMed Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, et al. Blood meal identification by direct enzyme-linked immunosorbent assay tested on Anopheles in Kenya. J Med Entomol. 1988;25:9–15.CrossRefPubMed
19.
go back to reference Lines JD, Curtis CF, Wilkes TJ, Njunwa KJ. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res. 1991;81:77–84.CrossRef Lines JD, Curtis CF, Wilkes TJ, Njunwa KJ. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res. 1991;81:77–84.CrossRef
20.
go back to reference WHO. Malaria entomology and vector control: guide for participants. Geneva: World Health Organization; 2011. WHO. Malaria entomology and vector control: guide for participants. Geneva: World Health Organization; 2011.
21.
go back to reference Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg. 2003;68:121–7.CrossRefPubMed Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg. 2003;68:121–7.CrossRefPubMed
22.
go back to reference Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 2010;9:62.CrossRefPubMedPubMedCentral Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 2010;9:62.CrossRefPubMedPubMedCentral
23.
go back to reference Killeen GF, Chitnis N, Moore SJ, Okumu FO. Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill? Malar J. 2011;10:207.CrossRefPubMedPubMedCentral Killeen GF, Chitnis N, Moore SJ, Okumu FO. Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill? Malar J. 2011;10:207.CrossRefPubMedPubMedCentral
24.
go back to reference Russell T, Lwetoijera D, Maliti D, Chipwaza B, Kihonda J, Charlwood TD, et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 2010;9:62.CrossRef Russell T, Lwetoijera D, Maliti D, Chipwaza B, Kihonda J, Charlwood TD, et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 2010;9:62.CrossRef
25.
go back to reference Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:108.CrossRef Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:108.CrossRef
26.
go back to reference Ossè RA, Aïkpon R, Gbédjissi GL, Gnanguenon V, Sèzonlin M, Govoétchan R, et al. A shift from Indoor Residual Spraying (IRS) with bendiocarb to Long-Lasting Insecticidal (mosquito) Nets (LLINs) associated with changes in malaria transmission indicators in pyrethroid resistance areas in Benin. Parasites Vectors. 2013;6:73.CrossRefPubMedPubMedCentral Ossè RA, Aïkpon R, Gbédjissi GL, Gnanguenon V, Sèzonlin M, Govoétchan R, et al. A shift from Indoor Residual Spraying (IRS) with bendiocarb to Long-Lasting Insecticidal (mosquito) Nets (LLINs) associated with changes in malaria transmission indicators in pyrethroid resistance areas in Benin. Parasites Vectors. 2013;6:73.CrossRefPubMedPubMedCentral
28.
go back to reference Graves PM, Ngondi JM, Hwang J, Getachew A, Teshome Gebre T, Mosher AW, et al. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia. Malar J. 2011;10:354.CrossRefPubMedPubMedCentral Graves PM, Ngondi JM, Hwang J, Getachew A, Teshome Gebre T, Mosher AW, et al. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia. Malar J. 2011;10:354.CrossRefPubMedPubMedCentral
29.
go back to reference Admasie A, Zemba A, Paulos W. Insecticide treated net utilization and associated factors among under-5 years old children in Mirab-Abay district, Gamo-Gofa Zone, Ethiopia. Frontiers in Public Health. 2018;6:1–7.CrossRef Admasie A, Zemba A, Paulos W. Insecticide treated net utilization and associated factors among under-5 years old children in Mirab-Abay district, Gamo-Gofa Zone, Ethiopia. Frontiers in Public Health. 2018;6:1–7.CrossRef
30.
go back to reference Doda Z, Solomon T, Loha E, Gari T, Lindtjørn B. A qualitative study of use of long-lasting insecticidal nets (LLINs) for intended and unintended purposes in Adami Tullu, East Shewa Zone, Ethiopia. Malar J. 2018;17:69.CrossRefPubMedPubMedCentral Doda Z, Solomon T, Loha E, Gari T, Lindtjørn B. A qualitative study of use of long-lasting insecticidal nets (LLINs) for intended and unintended purposes in Adami Tullu, East Shewa Zone, Ethiopia. Malar J. 2018;17:69.CrossRefPubMedPubMedCentral
31.
go back to reference Yohannes M, Boelee E. Early biting rhythm in the afro-tropical vector of malaria, Anopheles arabiensis, and challenges for its control in Ethiopia. Med Vet Entomol. 2011;26:103–5.CrossRefPubMed Yohannes M, Boelee E. Early biting rhythm in the afro-tropical vector of malaria, Anopheles arabiensis, and challenges for its control in Ethiopia. Med Vet Entomol. 2011;26:103–5.CrossRefPubMed
32.
go back to reference Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM. Species shifts in the Anopheles gambiae complex: Do LLINs successfully control Anopheles arabiensis? PLoS ONE. 2012;7:e31481.CrossRefPubMedPubMedCentral Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM. Species shifts in the Anopheles gambiae complex: Do LLINs successfully control Anopheles arabiensis? PLoS ONE. 2012;7:e31481.CrossRefPubMedPubMedCentral
33.
go back to reference Rishikesh N. Observations on anopheline vectors of malaria in an unsprayed Upland Valley in Ethiopia. Geneva: World Health Organization; 1966. Rishikesh N. Observations on anopheline vectors of malaria in an unsprayed Upland Valley in Ethiopia. Geneva: World Health Organization; 1966.
34.
go back to reference Deressa W, Loha E, Balkew M, Hailu A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: results from a cluster randomized controlled trial. Unpublished report on ASTMH; 2017. Deressa W, Loha E, Balkew M, Hailu A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: results from a cluster randomized controlled trial. Unpublished report on ASTMH; 2017.
35.
go back to reference Okumu F, Kiware SS, Moore SJ, Killeen GF. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes. Parasit Vectors. 2013;6:17.CrossRefPubMedPubMedCentral Okumu F, Kiware SS, Moore SJ, Killeen GF. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes. Parasit Vectors. 2013;6:17.CrossRefPubMedPubMedCentral
36.
go back to reference Balkew M, Getachew A, Chibsa S, Olana D, Reithinger R, Brogdon W. Insecticide resistance: a challenge to malaria vector control in Ethiopia. Malar J. 2012;11:139.CrossRef Balkew M, Getachew A, Chibsa S, Olana D, Reithinger R, Brogdon W. Insecticide resistance: a challenge to malaria vector control in Ethiopia. Malar J. 2012;11:139.CrossRef
Metadata
Title
Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial
Authors
Oljira Kenea
Meshesha Balkew
Habte Tekie
Wakgari Deressa
Eskindir Loha
Bernt Lindtjørn
Hans J. Overgaard
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2811-1

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue