Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

How useful are malaria risk maps at the country level? Perceptions of decision-makers in Kenya, Malawi and the Democratic Republic of Congo

Authors: Ludovica Ghilardi, George Okello, Linda Nyondo-Mipando, Chawanangwa Mahebere Chirambo, Fathy Malongo, Jenna Hoyt, Jieun Lee, Yovitha Sedekia, Justin Parkhurst, Jo Lines, Robert W. Snow, Caroline A. Lynch, Jayne Webster

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Declining malaria prevalence and pressure on external funding have increased the need for efficiency in malaria control in sub-Saharan Africa (SSA). Modelled Plasmodium falciparum parasite rate (PfPR) maps are increasingly becoming available and provide information on the epidemiological situation of countries. However, how these maps are understood or used for national malaria planning is rarely explored. In this study, the practices and perceptions of national decision-makers on the utility of malaria risk maps, showing prevalence of parasitaemia or incidence of illness, was investigated.

Methods

A document review of recent National Malaria Strategic Plans was combined with 64 in-depth interviews with stakeholders in Kenya, Malawi and the Democratic Republic of Congo (DRC). The document review focused on the type of epidemiological maps included and their use in prioritising and targeting interventions. Interviews (14 Kenya, 17 Malawi, 27 DRC, 6 global level) explored drivers of stakeholder perceptions of the utility, value and limitations of malaria risk maps.

Results

Three different types of maps were used to show malaria epidemiological strata: malaria prevalence using a PfPR modelled map (Kenya); malaria incidence using routine health system data (Malawi); and malaria prevalence using data from the most recent Demographic and Health Survey (DRC). In Kenya the map was used to target preventative interventions, including long-lasting insecticide-treated nets (LLINs) and intermittent preventive treatment in pregnancy (IPTp), whilst in Malawi and DRC the maps were used to target in-door residual spraying (IRS) and LLINs distributions in schools. Maps were also used for operational planning, supply quantification, financial justification and advocacy. Findings from the interviews suggested that decision-makers lacked trust in the modelled PfPR maps when based on only a few empirical data points (Malawi and DRC).

Conclusions

Maps were generally used to identify areas with high prevalence in order to implement specific interventions. Despite the availability of national level modelled PfPR maps in all three countries, they were only used in one country. Perceived utility of malaria risk maps was associated with the epidemiological structure of the country and use was driven by perceived need, understanding (quality and relevance), ownership and trust in the data used to develop the maps.
Literature
1.
go back to reference Weiss DJ, Lucas TCD, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:322–31.CrossRef Weiss DJ, Lucas TCD, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:322–31.CrossRef
2.
go back to reference World Health Organization. World malaria report 2019. Geneva: World Health Organization; 2019.CrossRef World Health Organization. World malaria report 2019. Geneva: World Health Organization; 2019.CrossRef
3.
go back to reference Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, et al. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature. 2017;550:515–8.CrossRef Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, et al. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature. 2017;550:515–8.CrossRef
4.
go back to reference Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med. 2016;375:2435–45.CrossRef Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med. 2016;375:2435–45.CrossRef
5.
go back to reference World Health Organization. 2016–2030 global malaria programme. Geneva: World Health Organization; 2016. World Health Organization. 2016–2030 global malaria programme. Geneva: World Health Organization; 2016.
6.
go back to reference Feachem RGA, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S, Binka F, et al. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet. 2019;394:1056–112.CrossRef Feachem RGA, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S, Binka F, et al. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet. 2019;394:1056–112.CrossRef
7.
go back to reference Walker PGT, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4:e474–84.CrossRef Walker PGT, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4:e474–84.CrossRef
8.
go back to reference Scott N, Hussain SA, Martin-Hughes R, Fowkes FJI, Kerr CC, Pearson R, et al. Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations. Malar J. 2017;16:368.CrossRef Scott N, Hussain SA, Martin-Hughes R, Fowkes FJI, Kerr CC, Pearson R, et al. Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations. Malar J. 2017;16:368.CrossRef
9.
go back to reference Clements ACA, Reid HL, Kelly GC, Hay SI. Further shrinking the malaria map: How can geospatial science help to achieve malaria elimination? Lancet Infect Dis. 2013;13:709–18.CrossRef Clements ACA, Reid HL, Kelly GC, Hay SI. Further shrinking the malaria map: How can geospatial science help to achieve malaria elimination? Lancet Infect Dis. 2013;13:709–18.CrossRef
10.
go back to reference WHO, RBM partnership to end malaria. High burden to high impact: a targeted malaria response. Geneva, World Health Organization. 2018. WHO, RBM partnership to end malaria. High burden to high impact: a targeted malaria response. Geneva, World Health Organization. 2018.
11.
go back to reference Omumbo JA, Noor AM, Fall IS, Snow RW. How well are malaria maps used to design and finance malaria control in Africa? PLoS ONE. 2013;8:e53198.CrossRef Omumbo JA, Noor AM, Fall IS, Snow RW. How well are malaria maps used to design and finance malaria control in Africa? PLoS ONE. 2013;8:e53198.CrossRef
12.
go back to reference Gitonga CW, Karanja PN, Kihara J, Mwanje M, et al. Implementing school malaria surveys in Kenya: towards a national surveillance system. Malar J. 2010;9:306.CrossRef Gitonga CW, Karanja PN, Kihara J, Mwanje M, et al. Implementing school malaria surveys in Kenya: towards a national surveillance system. Malar J. 2010;9:306.CrossRef
13.
go back to reference Swana EK, Yav TI, Ngwej LM, Mupemba BN, Suprianto, Mukeng CK, et al. School-based malaria prevalence: informative systematic surveillance measure to assess epidemiological impact of malaria control interventions in the Democratic Republic of the Congo. Malar J. 2018;17:141.CrossRef Swana EK, Yav TI, Ngwej LM, Mupemba BN, Suprianto, Mukeng CK, et al. School-based malaria prevalence: informative systematic surveillance measure to assess epidemiological impact of malaria control interventions in the Democratic Republic of the Congo. Malar J. 2018;17:141.CrossRef
14.
go back to reference Okebe J, Affara M, Correa S, Muhammad AK, Nwakanma D, Drakeley C, et al. School-based countrywide seroprevalence survey reveals spatial heterogeneity in malaria transmission in the Gambia. PLoS ONE. 2014;9:e110926.CrossRef Okebe J, Affara M, Correa S, Muhammad AK, Nwakanma D, Drakeley C, et al. School-based countrywide seroprevalence survey reveals spatial heterogeneity in malaria transmission in the Gambia. PLoS ONE. 2014;9:e110926.CrossRef
15.
go back to reference Houngbedji CA, Chammartin F, Yapi RB, Hürlimann E, N’Dri PB, Silué KD, et al. Spatial mapping and prediction of Plasmodium falciparum infection risk among school-aged children in Côte d’Ivoire. Parasit Vectors. 2016;9:494.CrossRef Houngbedji CA, Chammartin F, Yapi RB, Hürlimann E, N’Dri PB, Silué KD, et al. Spatial mapping and prediction of Plasmodium falciparum infection risk among school-aged children in Côte d’Ivoire. Parasit Vectors. 2016;9:494.CrossRef
16.
go back to reference Chacky F, Runge M, Rumisha SF, MacHafuko P, Chaki P, Massaga JJ, et al. Nationwide school malaria parasitaemia survey in public primary schools, the United Republic of Tanzania. Malar J. 2018;17:452.CrossRef Chacky F, Runge M, Rumisha SF, MacHafuko P, Chaki P, Massaga JJ, et al. Nationwide school malaria parasitaemia survey in public primary schools, the United Republic of Tanzania. Malar J. 2018;17:452.CrossRef
17.
go back to reference Diggle PJ, Giorgi E. Model-based geostatistics for prevalence mapping in low-resource settings. J Am Stat Assoc. 2016;111:1096–120.CrossRef Diggle PJ, Giorgi E. Model-based geostatistics for prevalence mapping in low-resource settings. J Am Stat Assoc. 2016;111:1096–120.CrossRef
18.
go back to reference Snow RW, Noor AM. Malaria risk mapping in Africa: The historical context to the Information for Malaria (INFORM) project. Working Paper in support of the INFORM Project funded by the Department for International Development and the Wellcome Trust, Nairobi, Kenya, 2015. Snow RW, Noor AM. Malaria risk mapping in Africa: The historical context to the Information for Malaria (INFORM) project. Working Paper in support of the INFORM Project funded by the Department for International Development and the Wellcome Trust, Nairobi, Kenya, 2015.
19.
go back to reference Nutley S, Walter I, Davies HTO. Promoting evidence-based practice: models and mechanisms from cross-sector review. Res Soc Work Pract. 2009;19:552–9.CrossRef Nutley S, Walter I, Davies HTO. Promoting evidence-based practice: models and mechanisms from cross-sector review. Res Soc Work Pract. 2009;19:552–9.CrossRef
20.
go back to reference Leir S, Parkhurst JO. Evidence-based policymaking: an important first step and the need to take the next. In: The politics of evidence: from evidence-based policy to the good governance of evidence; Parkhurst J, Ed. Taylor & Francis Group, 2017. Leir S, Parkhurst JO. Evidence-based policymaking: an important first step and the need to take the next. In: The politics of evidence: from evidence-based policy to the good governance of evidence; Parkhurst J, Ed. Taylor & Francis Group, 2017.
21.
go back to reference Tesfazghi K, Hill J, Jones C, Ranson H, Worrall E. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy Plan. 2016;31:91–101.CrossRef Tesfazghi K, Hill J, Jones C, Ranson H, Worrall E. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy Plan. 2016;31:91–101.CrossRef
22.
go back to reference D’Souza BJ, Parkhurst JO. When “Good Evidence” is not enough: a case of global malaria policy development. Glob Challenges. 2018;2:1700077.CrossRef D’Souza BJ, Parkhurst JO. When “Good Evidence” is not enough: a case of global malaria policy development. Glob Challenges. 2018;2:1700077.CrossRef
23.
go back to reference Wickremasinghe D, Hashmi IE, Schellenberg J, Avan BI. District decision-making for health in low-income settings: a systematic literature review. Health Policy Plan. 2016;31:ii12–24. Wickremasinghe D, Hashmi IE, Schellenberg J, Avan BI. District decision-making for health in low-income settings: a systematic literature review. Health Policy Plan. 2016;31:ii12–24.
24.
go back to reference Bhattacharyya S, Berhanu D, Taddesse N, Srivastava A, Wickremasinghe D, Schellenberg J, et al. District decision-making for health in low-income settings: a case study of the potential of public and private sector data in India and Ethiopia. Health Policy Plan. 2016;31:ii25–34. Bhattacharyya S, Berhanu D, Taddesse N, Srivastava A, Wickremasinghe D, Schellenberg J, et al. District decision-making for health in low-income settings: a case study of the potential of public and private sector data in India and Ethiopia. Health Policy Plan. 2016;31:ii25–34.
25.
go back to reference Hanson K, Schellenberg J. Commentary-District decision-making to strengthen maternal, newborn and child health services in low-income settings. Health Policy Plan. 2016;31:ii1–2. Hanson K, Schellenberg J. Commentary-District decision-making to strengthen maternal, newborn and child health services in low-income settings. Health Policy Plan. 2016;31:ii1–2.
26.
go back to reference Avan BI, Berhanu D, Umar N, Wickremasinghe D, Schellenberg J. District decision-making for health in low-income settings: a feasibility study of a data-informed platform for health in India, Nigeria and Ethiopia. Health Policy Plan. 2016;31:ii3–11. Avan BI, Berhanu D, Umar N, Wickremasinghe D, Schellenberg J. District decision-making for health in low-income settings: a feasibility study of a data-informed platform for health in India, Nigeria and Ethiopia. Health Policy Plan. 2016;31:ii3–11.
27.
go back to reference Gautham M, Spicer N, Subharwal M, Gupta S, Srivastava A, Bhattacharyya S, et al. District decision-making for health in low-income settings: a qualitative study in Uttar Pradesh, India, on engaging the private health sector in sharing health-related data. Health Policy Plan. 2016;31:ii35–46. Gautham M, Spicer N, Subharwal M, Gupta S, Srivastava A, Bhattacharyya S, et al. District decision-making for health in low-income settings: a qualitative study in Uttar Pradesh, India, on engaging the private health sector in sharing health-related data. Health Policy Plan. 2016;31:ii35–46.
28.
go back to reference Checchi F, Warsame A, Treacy-Wong V, Polonsky J, van Ommeren M, Prudhon C. Public health information in crisis-affected populations: a review of methods and their use for advocacy and action. Lancet. 2017;390:2297–313.CrossRef Checchi F, Warsame A, Treacy-Wong V, Polonsky J, van Ommeren M, Prudhon C. Public health information in crisis-affected populations: a review of methods and their use for advocacy and action. Lancet. 2017;390:2297–313.CrossRef
29.
go back to reference WHO. Global malaria programme. A framework for malaria elimination. Geneva: World Health Organization; 2017. WHO. Global malaria programme. A framework for malaria elimination. Geneva: World Health Organization; 2017.
30.
go back to reference Kuruvilla S, Mays N, Walt G. Describing the impact of health services and policy research. J Health Serv Res Policy. 2007;12(1_suppl):23–31.CrossRef Kuruvilla S, Mays N, Walt G. Describing the impact of health services and policy research. J Health Serv Res Policy. 2007;12(1_suppl):23–31.CrossRef
31.
go back to reference Winskill P, Walker PG, Cibulskis RE, Ghani AC. Prioritizing the scale-up of interventions for malaria control and elimination. Malar J. 2019;18:122.CrossRef Winskill P, Walker PG, Cibulskis RE, Ghani AC. Prioritizing the scale-up of interventions for malaria control and elimination. Malar J. 2019;18:122.CrossRef
32.
go back to reference Chitnis N, Schapira A, Schindler C, Penny MA, Smith TA. Mathematical analysis to prioritise strategies for malaria elimination. J Theor Biol. 2018;455:118–30.CrossRef Chitnis N, Schapira A, Schindler C, Penny MA, Smith TA. Mathematical analysis to prioritise strategies for malaria elimination. J Theor Biol. 2018;455:118–30.CrossRef
33.
go back to reference Stresman G, Bousema T, Cook J. Malaria hotspots: is there epidemiological evidence for fine-scale spatial targeting of interventions? Trends Parasitol. 2019;35:822–34.CrossRef Stresman G, Bousema T, Cook J. Malaria hotspots: is there epidemiological evidence for fine-scale spatial targeting of interventions? Trends Parasitol. 2019;35:822–34.CrossRef
34.
go back to reference Bousema T, Stresman G, Baidjoe AY, Bradley J, Knight P, Stone W, et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the Western Kenyan Highlands: a cluster-randomized controlled trial. PLoS Med. 2016;13:e1001993.CrossRef Bousema T, Stresman G, Baidjoe AY, Bradley J, Knight P, Stone W, et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the Western Kenyan Highlands: a cluster-randomized controlled trial. PLoS Med. 2016;13:e1001993.CrossRef
35.
go back to reference MoH. Kenya. National Malaria Strategy 2019-2023. Nairobi, 2019. MoH. Kenya. National Malaria Strategy 2019-2023. Nairobi, 2019.
36.
go back to reference Governement of Malawi, Ministry of Health. Malawi Malaria Strategic Plan 2017–2022. Lilongwe 2017. Governement of Malawi, Ministry of Health. Malawi Malaria Strategic Plan 2017–2022. Lilongwe 2017.
37.
go back to reference Programme nationale de lutte contre le paludisme (PNLP). Plan strategique national de lutte contre le paludisme. Kinshasa, 2016;81. Programme nationale de lutte contre le paludisme (PNLP). Plan strategique national de lutte contre le paludisme. Kinshasa, 2016;81.
38.
go back to reference The Global Fund, Standard Concept Note, Investing for impact against HIV, tuberculosis and malaria. Malawi. 2014. The Global Fund, Standard Concept Note, Investing for impact against HIV, tuberculosis and malaria. Malawi. 2014.
39.
go back to reference The Global Fund, Re-programming request, MoH, Kenya, Malaria component. 2015. The Global Fund, Re-programming request, MoH, Kenya, Malaria component. 2015.
40.
go back to reference African Leaders Malaria Alliance. How countries prioritized malaria control interventions: A review of recipients’ decisions under the Global Fund’s New Funding Model, 2014–2017. Geneva, 2016. African Leaders Malaria Alliance. How countries prioritized malaria control interventions: A review of recipients’ decisions under the Global Fund’s New Funding Model, 2014–2017. Geneva, 2016.
41.
go back to reference Malawi Malaria Impact Evaluation Group. Evaluation of the Impact of Malaria Control Interventions on all cause mortality in children under five years on age in Malawi. USAID. 2016;54:5058–61. Malawi Malaria Impact Evaluation Group. Evaluation of the Impact of Malaria Control Interventions on all cause mortality in children under five years on age in Malawi. USAID. 2016;54:5058–61.
42.
go back to reference Dalrymple U, Mappin B, Gething PW. Malaria mapping: understanding the global endemicity of falciparum and vivax malaria. BMC Med. 2015;13:140.CrossRef Dalrymple U, Mappin B, Gething PW. Malaria mapping: understanding the global endemicity of falciparum and vivax malaria. BMC Med. 2015;13:140.CrossRef
43.
go back to reference Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, et al. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J. 2017;16:459.CrossRef Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, et al. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J. 2017;16:459.CrossRef
44.
go back to reference Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378.CrossRef Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378.CrossRef
45.
go back to reference Howes RE, Hawa K, Andriamamonjy VF, Franchard T, Miarimbola R, Mioramalala SA, et al. A stakeholder workshop about modelled maps of key malaria indicator survey indicators in Madagascar. Malar J. 2019;18:90.CrossRef Howes RE, Hawa K, Andriamamonjy VF, Franchard T, Miarimbola R, Mioramalala SA, et al. A stakeholder workshop about modelled maps of key malaria indicator survey indicators in Madagascar. Malar J. 2019;18:90.CrossRef
46.
go back to reference Thawer SG, Chacky F, Runge M, Reaves E, Mandike R, Lazaro S, et al. Sub-national stratification of malaria risk in mainland Tanzania: a simplified assembly of survey and routine data. Malar J. 2020;19:177.CrossRef Thawer SG, Chacky F, Runge M, Reaves E, Mandike R, Lazaro S, et al. Sub-national stratification of malaria risk in mainland Tanzania: a simplified assembly of survey and routine data. Malar J. 2020;19:177.CrossRef
47.
go back to reference Alegana VA, Okiro EA, Snow RW. Routine data for malaria morbidity estimation in Africa: challenges and prospects. BMC Med. 2020;18:121.CrossRef Alegana VA, Okiro EA, Snow RW. Routine data for malaria morbidity estimation in Africa: challenges and prospects. BMC Med. 2020;18:121.CrossRef
48.
go back to reference Runge M, Molteni F, Mandike R, Snow RW, Lengeler C, Mohamed A, et al. Applied mathematical modelling to inform national malaria policies, strategies and operations in Tanzania. Malar J. 2020;19:101.CrossRef Runge M, Molteni F, Mandike R, Snow RW, Lengeler C, Mohamed A, et al. Applied mathematical modelling to inform national malaria policies, strategies and operations in Tanzania. Malar J. 2020;19:101.CrossRef
49.
go back to reference Paul C, Kramer R, Lesser A, Mutero C, Miranda ML, Dickinson K. Identifying barriers in the malaria control policymaking process in East Africa: insights from stakeholders and a structured literature review. BMC Public Health. 2015;15:862.CrossRef Paul C, Kramer R, Lesser A, Mutero C, Miranda ML, Dickinson K. Identifying barriers in the malaria control policymaking process in East Africa: insights from stakeholders and a structured literature review. BMC Public Health. 2015;15:862.CrossRef
50.
go back to reference Newman K, Fisher C, Shaxson L. Stimulating demand for research evidence: What role for capacity-building? IDS Bull. 2012;43:17–24.CrossRef Newman K, Fisher C, Shaxson L. Stimulating demand for research evidence: What role for capacity-building? IDS Bull. 2012;43:17–24.CrossRef
51.
go back to reference Macharia PM, Giorgi E, Noor AM, Waqo E, Kiptui R, Okiro EA, et al. Spatio-temporal analysis of Plasmodium falciparum prevalence to understand the past and chart the future of malaria control in Kenya. Malar J. 2018;17:340.CrossRef Macharia PM, Giorgi E, Noor AM, Waqo E, Kiptui R, Okiro EA, et al. Spatio-temporal analysis of Plasmodium falciparum prevalence to understand the past and chart the future of malaria control in Kenya. Malar J. 2018;17:340.CrossRef
52.
go back to reference Ministry of Health Kenya. The epidemiology and control profile of malaria in Kenya: reviewing the evidence to guide the future vector control. Nairobi, 2016. Ministry of Health Kenya. The epidemiology and control profile of malaria in Kenya: reviewing the evidence to guide the future vector control. Nairobi, 2016.
53.
go back to reference Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, et al. The risks of malaria infection in Kenya in 2009. BMC Infect Dis. 2009;9:180.CrossRef Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, et al. The risks of malaria infection in Kenya in 2009. BMC Infect Dis. 2009;9:180.CrossRef
54.
go back to reference Give Chipeta M, Giorgi E, Mategula D, Macharia PM, Ligomba C, Munyenyembe A, et al. Open Peer Review Geostatistical analysis of Malawi’s changing malaria transmission from 2010 to 2017. Wellcome Open Res. 2019;4:57.CrossRef Give Chipeta M, Giorgi E, Mategula D, Macharia PM, Ligomba C, Munyenyembe A, et al. Open Peer Review Geostatistical analysis of Malawi’s changing malaria transmission from 2010 to 2017. Wellcome Open Res. 2019;4:57.CrossRef
55.
go back to reference Taylor SM, Messina JP, Hand CC, Juliano JJ, Muwonga J, Tshefu AK, et al. Molecular malaria epidemiology: mapping and burden estimates for the democratic Republic of the Congo, 2007. PLoS ONE. 2011;6:e16420.CrossRef Taylor SM, Messina JP, Hand CC, Juliano JJ, Muwonga J, Tshefu AK, et al. Molecular malaria epidemiology: mapping and burden estimates for the democratic Republic of the Congo, 2007. PLoS ONE. 2011;6:e16420.CrossRef
56.
go back to reference Programme Nationale de Lutte contre le Paludisme (PNLP) An epidemiological profile of malaria in the Democratic Republic of Congo, 2014. Programme Nationale de Lutte contre le Paludisme (PNLP) An epidemiological profile of malaria in the Democratic Republic of Congo, 2014.
Metadata
Title
How useful are malaria risk maps at the country level? Perceptions of decision-makers in Kenya, Malawi and the Democratic Republic of Congo
Authors
Ludovica Ghilardi
George Okello
Linda Nyondo-Mipando
Chawanangwa Mahebere Chirambo
Fathy Malongo
Jenna Hoyt
Jieun Lee
Yovitha Sedekia
Justin Parkhurst
Jo Lines
Robert W. Snow
Caroline A. Lynch
Jayne Webster
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03425-z

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue