Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity

Authors: Edounou Jacques Gnambani, Etienne Bilgo, Adama Sanou, Roch K. Dabiré, Abdoulaye Diabaté

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, the impact of Chromobacterium violaceum infections, isolated from both larvae and adult of wild-caught Anopheles gambiae sensu lato mosquitoes in Burkina Faso, was evaluated on mosquito survival, blood feeding and fecundity.

Methods

To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C. violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C. violaceum.

Results

Chromobacterium violaceum kills pyrethroid resistant Anopheles coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~ 59%, P < 0.001) the mosquito feeding willingness from day 4-post infection (~ 81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~ 16 eggs laid/mosquito with C. violaceum infected mosquitoes vs ~ 129 eggs laid/mosquito with control mosquitoes) and hatching of mosquitoes (a reduction of ~ 22% of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed significantly higher retention rates of immature eggs and follicles.

Conclusion

These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide-resistant An. coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World Malaria Report 2017. Geneva: World Health Organization; 2017. WHO. World Malaria Report 2017. Geneva: World Health Organization; 2017.
2.
go back to reference WHO. World malaria report 2019. Geneva: World Health Organization; 2019. WHO. World malaria report 2019. Geneva: World Health Organization; 2019.
3.
go back to reference WHO. World malaria report 2016. Geneva: World Health Organization; 2016. WHO. World malaria report 2016. Geneva: World Health Organization; 2016.
4.
go back to reference Craig M, Le Sueur D, Snow B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRef Craig M, Le Sueur D, Snow B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRef
5.
go back to reference Hien AS, Soma DD, Hema O, Bayili B, Namountougou M, Gnankine O, et al. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiaes.l. populations from cotton growing areas in Burkina Faso, West Africa. PLoS ONE. 2017;12:e0173098.CrossRef Hien AS, Soma DD, Hema O, Bayili B, Namountougou M, Gnankine O, et al. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiaes.l. populations from cotton growing areas in Burkina Faso, West Africa. PLoS ONE. 2017;12:e0173098.CrossRef
6.
go back to reference Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016;387:1785–8.CrossRef Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016;387:1785–8.CrossRef
7.
go back to reference WHO Global Malaria Programme. World Malaria Report. Geneva: World Health Organization; 2012. WHO Global Malaria Programme. World Malaria Report. Geneva: World Health Organization; 2012.
8.
go back to reference Thomas MB. Biological control of human disease vectors: a perspective on challenges and opportunities. Biocontrol. 2018;63:61–9.CrossRef Thomas MB. Biological control of human disease vectors: a perspective on challenges and opportunities. Biocontrol. 2018;63:61–9.CrossRef
9.
go back to reference Kamareddine L. The biological control of the malaria vector. Toxins. 2012;4:748–67.CrossRef Kamareddine L. The biological control of the malaria vector. Toxins. 2012;4:748–67.CrossRef
10.
go back to reference Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.CrossRef Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.CrossRef
11.
go back to reference McLean KJ, Jacobs-Lorena M. Genetic control of malaria mosquitoes. Trends Parasitol. 2016;32:174–6.CrossRef McLean KJ, Jacobs-Lorena M. Genetic control of malaria mosquitoes. Trends Parasitol. 2016;32:174–6.CrossRef
12.
go back to reference Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol. 2003;206:3809–16.CrossRef Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol. 2003;206:3809–16.CrossRef
13.
go back to reference Riehle MA, Jacobs-Lorena M. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem Mol Biol. 2005;35:699–707.CrossRef Riehle MA, Jacobs-Lorena M. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem Mol Biol. 2005;35:699–707.CrossRef
14.
go back to reference Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl AcadSci USA. 2012;109:12734–9.CrossRef Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl AcadSci USA. 2012;109:12734–9.CrossRef
15.
go back to reference Majori G, Ali A, Sabatinelli G. Laboratory and field efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus against Anopheles gambiaes.l. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. J Am Mosq Control Assoc. 1987;3:20–5.PubMed Majori G, Ali A, Sabatinelli G. Laboratory and field efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus against Anopheles gambiaes.l. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. J Am Mosq Control Assoc. 1987;3:20–5.PubMed
16.
go back to reference Baldini F, Segata N, Pompon J, Marcenac P, Robert Shaw W, Dabiré RK, et al. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun. 2014;5:3985.CrossRef Baldini F, Segata N, Pompon J, Marcenac P, Robert Shaw W, Dabiré RK, et al. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun. 2014;5:3985.CrossRef
17.
go back to reference Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH. Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis. 2006;27:508–16.CrossRef Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH. Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis. 2006;27:508–16.CrossRef
18.
go back to reference Martin PAW, Gundersen-Rindal D, Blackburn M, Buyer J. Chromobacterium subtsugae sp. Nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J SystEvolMicrobiol. 2007;57:993–9. Martin PAW, Gundersen-Rindal D, Blackburn M, Buyer J. Chromobacterium subtsugae sp. Nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J SystEvolMicrobiol. 2007;57:993–9.
19.
go back to reference Short SM, van Tol S, Smith B, Dong Y, Dimopoulos G. The mosquito adulticidalChromobacterium sp. Panama causes transgenerational impacts on fitness parameters and elicits xenobiotic gene responses. Parasit Vectors. 2018;11:229.CrossRef Short SM, van Tol S, Smith B, Dong Y, Dimopoulos G. The mosquito adulticidalChromobacterium sp. Panama causes transgenerational impacts on fitness parameters and elicits xenobiotic gene responses. Parasit Vectors. 2018;11:229.CrossRef
20.
go back to reference Namountougou M, Simard F, Baldet T, Diabaté A, Ouédraogo JB, Martin T, et al. Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS ONE. 2012;7:e48412.CrossRef Namountougou M, Simard F, Baldet T, Diabaté A, Ouédraogo JB, Martin T, et al. Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS ONE. 2012;7:e48412.CrossRef
21.
go back to reference Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRef Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRef
22.
go back to reference Bilgo E, Lovett B, Fang W, Bende N, King GF, Diabate A, et al. Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria-vector mosquitoes. Sci Rep. 2017;7:3433.CrossRef Bilgo E, Lovett B, Fang W, Bende N, King GF, Diabate A, et al. Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria-vector mosquitoes. Sci Rep. 2017;7:3433.CrossRef
23.
go back to reference MR4, NIH. Methods in Anopheles Research. MR4. 2014. MR4, NIH. Methods in Anopheles Research. MR4. 2014.
24.
go back to reference WHOPES. Guidelines for Laboratory and Field-Testing of Long-Lasting Insecticidal Nets. Geneva: World Health Organization; 2013. WHOPES. Guidelines for Laboratory and Field-Testing of Long-Lasting Insecticidal Nets. Geneva: World Health Organization; 2013.
25.
go back to reference National Research Council (US) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals.Washington (DC): National Academies Press (US); 1996. ISBN-10: 0-309-05377-3. National Research Council (US) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals.Washington (DC): National Academies Press (US); 1996. ISBN-10: 0-309-05377-3.
26.
go back to reference Vöing K, Harrison A, Soby SD. Draft genome sequence of Chromobacterium vaccinii, a potential biocontrol agent against mosquito (Aedes aegypti) larvae. Genome Announc. 2015;3:e00477–e515.PubMedPubMedCentral Vöing K, Harrison A, Soby SD. Draft genome sequence of Chromobacterium vaccinii, a potential biocontrol agent against mosquito (Aedes aegypti) larvae. Genome Announc. 2015;3:e00477–e515.PubMedPubMedCentral
27.
go back to reference Goetz C, Dufour S, Archambault M, Malouin F, Jacques M, Tremblay YD, et al. Les biofilms bactériens : leur importance en santé animale et en santé publique. J Dairy Sci. 2017;100:215–29.CrossRef Goetz C, Dufour S, Archambault M, Malouin F, Jacques M, Tremblay YD, et al. Les biofilms bactériens : leur importance en santé animale et en santé publique. J Dairy Sci. 2017;100:215–29.CrossRef
28.
go back to reference Blanford S, Jenkins NE, Read AF, Thomas MB. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes. Malar J. 2012;11:365.CrossRef Blanford S, Jenkins NE, Read AF, Thomas MB. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes. Malar J. 2012;11:365.CrossRef
29.
go back to reference Howard AFV, N’Guessan R, Koenraadt CJM, Asidi A, Farenhorst M, Akogbéto M, et al. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa. Parasit Vectors. 2010;3:87.CrossRef Howard AFV, N’Guessan R, Koenraadt CJM, Asidi A, Farenhorst M, Akogbéto M, et al. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa. Parasit Vectors. 2010;3:87.CrossRef
30.
go back to reference Blanford S, Shi W, Christian R, Marden JH, Koekemoer LL, Brooke BD, et al. Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria vectors. PLoS ONE. 2011;6:e23591.CrossRef Blanford S, Shi W, Christian R, Marden JH, Koekemoer LL, Brooke BD, et al. Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria vectors. PLoS ONE. 2011;6:e23591.CrossRef
31.
go back to reference Hernández-Martínez S, Cardoso-Jaime V, Nouzova M, Michalkova V, Ramirez CE, Fernandez-Lima F, et al. Juvenile hormone controls ovarian development in female Anopheles albimanus mosquitoes. Sci Rep. 2019;9:2127.CrossRef Hernández-Martínez S, Cardoso-Jaime V, Nouzova M, Michalkova V, Ramirez CE, Fernandez-Lima F, et al. Juvenile hormone controls ovarian development in female Anopheles albimanus mosquitoes. Sci Rep. 2019;9:2127.CrossRef
32.
go back to reference Gonella E, Crotti E, Rizzi A, Mandrioli M, Favia G, Daffonchio D, et al. Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). BMC Microbiol. 2012;12(Suppl 1):S4.CrossRef Gonella E, Crotti E, Rizzi A, Mandrioli M, Favia G, Daffonchio D, et al. Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). BMC Microbiol. 2012;12(Suppl 1):S4.CrossRef
33.
go back to reference Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010;60:644–54.CrossRef Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010;60:644–54.CrossRef
34.
go back to reference Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA. 2007;104:9047–51.CrossRef Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA. 2007;104:9047–51.CrossRef
35.
go back to reference Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, et al. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun. 2016;7:11772.CrossRef Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, et al. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun. 2016;7:11772.CrossRef
36.
go back to reference Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci USA. 2012;109:255–60.CrossRef Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci USA. 2012;109:255–60.CrossRef
Metadata
Title
Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity
Authors
Edounou Jacques Gnambani
Etienne Bilgo
Adama Sanou
Roch K. Dabiré
Abdoulaye Diabaté
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03420-4

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue