Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

Costing malaria interventions from pilots to elimination programmes

Authors: Katya Galactionova, Mar Velarde, Kafula Silumbe, John Miller, Anthony McDonnell, Ricardo Aguas, Thomas A. Smith, Melissa A. Penny

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Malaria programmes in countries with low transmission levels require evidence to optimize deployment of current and new tools to reach elimination with limited resources. Recent pilots of elimination strategies in Ethiopia, Senegal, and Zambia produced evidence of their epidemiological impacts and costs. There is a need to generalize these findings to different epidemiological and health systems contexts.

Methods

Drawing on experience of implementing partners, operational documents and costing studies from these pilots, reference scenarios were defined for rapid reporting (RR), reactive case detection (RACD), mass drug administration (MDA), and in-door residual spraying (IRS). These generalized interventions from their trial implementation to one typical of programmatic delivery. In doing so, resource use due to interventions was isolated from research activities and was related to the pilot setting. Costing models developed around this reference implementation, standardized the scope of resources costed, the valuation of resource use, and the setting in which interventions were evaluated. Sensitivity analyses were used to inform generalizability of the estimates and model assumptions.

Results

Populated with local prices and resource use from the pilots, the models yielded an average annual economic cost per capita of $0.18 for RR, $0.75 for RACD, $4.28 for MDA (two rounds), and $1.79 for IRS (one round, 50% households). Intervention design and resource use at service delivery were key drivers of variation in costs of RR, MDA, and RACD. Scale was the most important parameter for IRS. Overall price level was a minor contributor, except for MDA where drugs accounted for 70% of the cost. The analyses showed that at implementation scales comparable to health facility catchment area, systematic correlations between model inputs characterizing implementation and setting produce large gradients in costs.

Conclusions

Prospective costing models are powerful tools to explore resource and cost implications of policy alternatives. By formalizing translation of operational data into an estimate of intervention cost, these models provide the methodological infrastructure to strengthen capacity gap for economic evaluation in endemic countries. The value of this approach for decision-making is enhanced when primary cost data collection is designed to enable analysis of the efficiency of operational inputs in relation to features of the trial or the setting, thus facilitating transferability.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2018. WHO. World malaria report. Geneva: World Health Organization; 2018.
2.
go back to reference Kunene S, Phillips AA, Gosling RD, Kandula D, Novotny JM. A national policy for malaria elimination in Swaziland: a first for sub-Saharan Africa. Malar J. 2011;10:313.CrossRef Kunene S, Phillips AA, Gosling RD, Kandula D, Novotny JM. A national policy for malaria elimination in Swaziland: a first for sub-Saharan Africa. Malar J. 2011;10:313.CrossRef
3.
go back to reference Moonasar D, Nuthulaganti T, Kruger PS, Mabuza A, Rasiswi ES, Benson FG, et al. Malaria control in South Africa 2000–2010: beyond MDG6. Malar J. 2012;11:294.CrossRef Moonasar D, Nuthulaganti T, Kruger PS, Mabuza A, Rasiswi ES, Benson FG, et al. Malaria control in South Africa 2000–2010: beyond MDG6. Malar J. 2012;11:294.CrossRef
4.
go back to reference Raman J, Morris N, Frean J, Brooke B, Blumberg L, Kruger P, et al. Reviewing South Africa's malaria elimination strategy (2012–2018): progress, challenges and priorities. Malar J. 2016;15:438.CrossRef Raman J, Morris N, Frean J, Brooke B, Blumberg L, Kruger P, et al. Reviewing South Africa's malaria elimination strategy (2012–2018): progress, challenges and priorities. Malar J. 2016;15:438.CrossRef
5.
go back to reference Chizema-Kawesha E, Miller JM, Steketee RW, Mukonka VM, Mukuka C, Mohamed AD, et al. Scaling up malaria control in Zambia: progress and impact 2005–2008. Am J Trop Med Hyg. 2010;83:480–8.CrossRef Chizema-Kawesha E, Miller JM, Steketee RW, Mukonka VM, Mukuka C, Mohamed AD, et al. Scaling up malaria control in Zambia: progress and impact 2005–2008. Am J Trop Med Hyg. 2010;83:480–8.CrossRef
6.
go back to reference Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.CrossRef Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.CrossRef
7.
go back to reference WHO. A framework for malaria elimination. Geneva: World Health Organization; 2017. WHO. A framework for malaria elimination. Geneva: World Health Organization; 2017.
8.
go back to reference Eisele TP, Bennett A, Silumbe K, Finn TP, Chalwe V, Kamuliwo M, et al. Short-term impact of mass drug administration with dihydroartemisinin plus piperaquine on malaria in Southern Province Zambia: a cluster-randomized controlled trial. J Infect Dis. 2016;214:1831–9.CrossRef Eisele TP, Bennett A, Silumbe K, Finn TP, Chalwe V, Kamuliwo M, et al. Short-term impact of mass drug administration with dihydroartemisinin plus piperaquine on malaria in Southern Province Zambia: a cluster-randomized controlled trial. J Infect Dis. 2016;214:1831–9.CrossRef
9.
go back to reference Eisele TP, Silumbe K, Finn T, Chalwe V, Kamuliwo M, Hamainza B, et al. Assessing the effectiveness of household-level focal mass drug administration and community-wide mass drug administration for reducing malaria parasite infection prevalence and incidence in Southern Province, Zambia: study protocol for a community randomized controlled trial. Trials. 2015;16:347.CrossRef Eisele TP, Silumbe K, Finn T, Chalwe V, Kamuliwo M, Hamainza B, et al. Assessing the effectiveness of household-level focal mass drug administration and community-wide mass drug administration for reducing malaria parasite infection prevalence and incidence in Southern Province, Zambia: study protocol for a community randomized controlled trial. Trials. 2015;16:347.CrossRef
10.
go back to reference Larsen DA, Bennett A, Silumbe K, Hamainza B, Yukich JO, Keating J, et al. Population-wide malaria testing and treatment with rapid diagnostic tests and artemether-lumefantrine in southern Zambia: a community randomized step-wedge control trial design. Am J Trop Med Hyg. 2015;92:913–21.CrossRef Larsen DA, Bennett A, Silumbe K, Hamainza B, Yukich JO, Keating J, et al. Population-wide malaria testing and treatment with rapid diagnostic tests and artemether-lumefantrine in southern Zambia: a community randomized step-wedge control trial design. Am J Trop Med Hyg. 2015;92:913–21.CrossRef
11.
go back to reference Bridges DJ, Miller JM, Chalwe V, Moonga H, Hamainza B, Steketee R, et al. Community-led responses for elimination (CoRE): a study protocol for a community randomized controlled trial assessing the effectiveness of community-level, reactive focal drug administration for reducing Plasmodium falciparum infection prevalence and incidence in Southern Province Zambia. Trials. 2017;18:511.CrossRef Bridges DJ, Miller JM, Chalwe V, Moonga H, Hamainza B, Steketee R, et al. Community-led responses for elimination (CoRE): a study protocol for a community randomized controlled trial assessing the effectiveness of community-level, reactive focal drug administration for reducing Plasmodium falciparum infection prevalence and incidence in Southern Province Zambia. Trials. 2017;18:511.CrossRef
12.
go back to reference Littrell M, Sow GD, Ngom A, Ba M, Mboup BM, Dieye Y, et al. Case investigation and reactive case detection for malaria elimination in northern Senegal. Malar J. 2013;12:331.CrossRef Littrell M, Sow GD, Ngom A, Ba M, Mboup BM, Dieye Y, et al. Case investigation and reactive case detection for malaria elimination in northern Senegal. Malar J. 2013;12:331.CrossRef
13.
go back to reference Larson BA, Ngoma T, Silumbe K, Rutagwera MR, Hamainza B, Winters AM, et al. A framework for evaluating the costs of malaria elimination interventions: an application to reactive case detection in Southern Province of Zambia, 2014. Malar J. 2016;15:408.CrossRef Larson BA, Ngoma T, Silumbe K, Rutagwera MR, Hamainza B, Winters AM, et al. A framework for evaluating the costs of malaria elimination interventions: an application to reactive case detection in Southern Province of Zambia, 2014. Malar J. 2016;15:408.CrossRef
14.
go back to reference Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.CrossRef Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.CrossRef
15.
go back to reference Searle KM, Hamapumbu H, Lubinda J, Shields TM, Pinchoff J, Kobayashi T, et al. Evaluation of the operational challenges in implementing reactive screen-and-treat and implications of reactive case detection strategies for malaria elimination in a region of low transmission in southern Zambia. Malar J. 2016;15:412.CrossRef Searle KM, Hamapumbu H, Lubinda J, Shields TM, Pinchoff J, Kobayashi T, et al. Evaluation of the operational challenges in implementing reactive screen-and-treat and implications of reactive case detection strategies for malaria elimination in a region of low transmission in southern Zambia. Malar J. 2016;15:412.CrossRef
16.
go back to reference Silumbe K, Yukich JO, Hamainza B, Bennett A, Earle D, Kamuliwo M, et al. Costs and cost-effectiveness of a large-scale mass testing and treatment intervention for malaria in Southern Province Zambia. Malar J. 2015;14:211.CrossRef Silumbe K, Yukich JO, Hamainza B, Bennett A, Earle D, Kamuliwo M, et al. Costs and cost-effectiveness of a large-scale mass testing and treatment intervention for malaria in Southern Province Zambia. Malar J. 2015;14:211.CrossRef
17.
go back to reference O'Sullivan AK, Thompson D, Drummond MF. Collection of health-economic data alongside clinical trials: is there a future for piggyback evaluations? Value Health. 2005;8:67–79.CrossRef O'Sullivan AK, Thompson D, Drummond MF. Collection of health-economic data alongside clinical trials: is there a future for piggyback evaluations? Value Health. 2005;8:67–79.CrossRef
22.
go back to reference Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the economic evaluation of health care programmes. 3rd ed. Oxford: Oxford University Press; 2005. Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the economic evaluation of health care programmes. 3rd ed. Oxford: Oxford University Press; 2005.
23.
go back to reference Gold MR, Siegel JE, Russell LB, Weinstein MC. Cost-effectiveness in health and medicine. New York: Oxford University Press; 1996. Gold MR, Siegel JE, Russell LB, Weinstein MC. Cost-effectiveness in health and medicine. New York: Oxford University Press; 1996.
24.
go back to reference StataCorp. Stata Statistical Software: Release 14. College Station: StataCorp LP; 2015. StataCorp. Stata Statistical Software: Release 14. College Station: StataCorp LP; 2015.
25.
go back to reference Cleveland WS. Lowess—a program for smoothing scatterplots by robust locally weighted regression. Am Stat. 1981;35:54.CrossRef Cleveland WS. Lowess—a program for smoothing scatterplots by robust locally weighted regression. Am Stat. 1981;35:54.CrossRef
26.
go back to reference Zambia Malaria Operational Plan FY 2018. U.S. President's Malaria Initiative; 2018. Zambia Malaria Operational Plan FY 2018. U.S. President's Malaria Initiative; 2018.
27.
go back to reference Goldman AS, Guisinger VH, Aikins M, Amarillo ML, Belizario VY, Garshong B, et al. National mass drug administration costs for lymphatic filariasis elimination. PLoS Negl Trop Dis. 2007;1:e67.CrossRef Goldman AS, Guisinger VH, Aikins M, Amarillo ML, Belizario VY, Garshong B, et al. National mass drug administration costs for lymphatic filariasis elimination. PLoS Negl Trop Dis. 2007;1:e67.CrossRef
28.
go back to reference Fitzpatrick C, Fleming FM, Madin-Warburton M, Schneider T, Meheus F, Asiedu K, et al. Benchmarking the cost per person of mass treatment for selected neglected tropical diseases: an approach based on literature review and meta-regression with web-based software application. PLoS Negl Trop Dis. 2016;10:e0005037.CrossRef Fitzpatrick C, Fleming FM, Madin-Warburton M, Schneider T, Meheus F, Asiedu K, et al. Benchmarking the cost per person of mass treatment for selected neglected tropical diseases: an approach based on literature review and meta-regression with web-based software application. PLoS Negl Trop Dis. 2016;10:e0005037.CrossRef
29.
go back to reference Johns B, Yihdego YY, Kolyada L, Dengela D, Chibsa S, Dissanayake G, et al. Indoor residual spraying delivery models to prevent malaria: comparison of community- and district-based approaches in Ethiopia. Glob Health Sci Pract. 2016;4:529–41.CrossRef Johns B, Yihdego YY, Kolyada L, Dengela D, Chibsa S, Dissanayake G, et al. Indoor residual spraying delivery models to prevent malaria: comparison of community- and district-based approaches in Ethiopia. Glob Health Sci Pract. 2016;4:529–41.CrossRef
30.
go back to reference Ramsey SD, Willke RJ, Glick H, Reed SD, Augustovski F, Jonsson B, et al. Cost-effectiveness analysis alongside clinical trials II-An ISPOR good research practices task force report. Value Health. 2015;18:161–72.CrossRef Ramsey SD, Willke RJ, Glick H, Reed SD, Augustovski F, Jonsson B, et al. Cost-effectiveness analysis alongside clinical trials II-An ISPOR good research practices task force report. Value Health. 2015;18:161–72.CrossRef
31.
go back to reference Johns B, Baltussen R. Accounting for the cost of scaling-up health interventions. Health Econ. 2004;13:1117–24.CrossRef Johns B, Baltussen R. Accounting for the cost of scaling-up health interventions. Health Econ. 2004;13:1117–24.CrossRef
32.
go back to reference Baltussen R, Adam T, Tan Torres T, Hutubessy R, Acharya A, Evans D. Generalzed cost-effectiveness analysis: a guide. Geneva: World Health Organization; 2002. Baltussen R, Adam T, Tan Torres T, Hutubessy R, Acharya A, Evans D. Generalzed cost-effectiveness analysis: a guide. Geneva: World Health Organization; 2002.
33.
go back to reference Cico AJ, Johns B. PMI IRS country programs: 2017 comparative cost analysis. Rockville: Abt Associates Inc.; 2018. Cico AJ, Johns B. PMI IRS country programs: 2017 comparative cost analysis. Rockville: Abt Associates Inc.; 2018.
34.
go back to reference Taylor C, Griffiths F, Lilford R. Affordability of comprehensive community health worker programmes in rural sub-Saharan Africa. BMJ Glob Health. 2017;2:e000391.CrossRef Taylor C, Griffiths F, Lilford R. Affordability of comprehensive community health worker programmes in rural sub-Saharan Africa. BMJ Glob Health. 2017;2:e000391.CrossRef
35.
go back to reference Kasteng F, Settumba S, Kallander K, Vassall A, inSCALE Study Group. Valuing the work of unpaid community health workers and exploring the incentives to volunteering in rural Africa. Health Policy Plan. 2016;31:205–16.CrossRef Kasteng F, Settumba S, Kallander K, Vassall A, inSCALE Study Group. Valuing the work of unpaid community health workers and exploring the incentives to volunteering in rural Africa. Health Policy Plan. 2016;31:205–16.CrossRef
37.
go back to reference Egger M, Johnson L, Althaus C, Schoni A, Salanti G, Low N, et al. Developing WHO guidelines: time to formally include evidence from mathematical modelling studies. F1000Res. 2017;6:1584.CrossRef Egger M, Johnson L, Althaus C, Schoni A, Salanti G, Low N, et al. Developing WHO guidelines: time to formally include evidence from mathematical modelling studies. F1000Res. 2017;6:1584.CrossRef
38.
go back to reference Gerardin J, Bever CA, Bridenbecker D, Hamainza B, Silumbe K, Miller JM, et al. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study. Malar J. 2017;16:248.CrossRef Gerardin J, Bever CA, Bridenbecker D, Hamainza B, Silumbe K, Miller JM, et al. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study. Malar J. 2017;16:248.CrossRef
39.
go back to reference Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province Zambia. Malar J. 2010;9:265.CrossRef Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province Zambia. Malar J. 2010;9:265.CrossRef
40.
go back to reference Reiker T, Chitnis N, Smith T. Modelling reactive case detection strategies for interrupting transmission of Plasmodium falciparum malaria. Malar J. 2019;18:259.CrossRef Reiker T, Chitnis N, Smith T. Modelling reactive case detection strategies for interrupting transmission of Plasmodium falciparum malaria. Malar J. 2019;18:259.CrossRef
41.
go back to reference WHO. Mass drug administration for falciparum malaria. A practical field manual. Geneva: World Health Organization; 2017. WHO. Mass drug administration for falciparum malaria. A practical field manual. Geneva: World Health Organization; 2017.
42.
go back to reference WHO. Indoor residual spraying: An operational manual for IRS for malaria transmission, control and elimination. 2nd ed. Geneva: World Health Organization; 2015. WHO. Indoor residual spraying: An operational manual for IRS for malaria transmission, control and elimination. 2nd ed. Geneva: World Health Organization; 2015.
Metadata
Title
Costing malaria interventions from pilots to elimination programmes
Authors
Katya Galactionova
Mar Velarde
Kafula Silumbe
John Miller
Anthony McDonnell
Ricardo Aguas
Thomas A. Smith
Melissa A. Penny
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03405-3

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue