Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Plasmodium Falciparum | Research

Human plasma plasminogen internalization route in Plasmodium falciparum-infected erythrocytes

Authors: Sarah El Chamy Maluf, Marcelo Yudi Icimoto, Pollyana Maria Saud Melo, Alexandre Budu, Rita Coimbra, Marcos Leoni Gazarini, Adriana Karaoglanovic Carmona

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

The intra-erythrocytic development of the malaria parasite Plasmodium falciparum depends on the uptake of a number of essential nutrients from the host cell and blood plasma. It is widely recognized that the parasite imports low molecular weight solutes from the plasma and the consumption of these nutrients by P. falciparum has been extensively analysed. However, although it was already shown that the parasite also imports functional proteins from the vertebrate host, the internalization route through the different infected erythrocyte membranes has not yet been elucidated. In order to further understand the uptake mechanism, the study examined the trafficking of human plasminogen from the extracellular medium into P. falciparum-infected red blood cells.

Methods

Plasmodium falciparum clone 3D7 was cultured in standard HEPES-buffered RPMI 1640 medium supplemented with 0.5% AlbuMAX. Exogenous human plasminogen was added to the P. falciparum culture and the uptake of this protein by the parasites was analysed by electron microscopy and Western blotting. Immunoprecipitation and mass spectrometry were performed to investigate possible protein interactions that may assist plasminogen import into infected erythrocytes. The effect of pharmacological inhibitors of different cellular physiological processes in plasminogen uptake was also tested.

Results

It was observed that plasminogen was selectively internalized by P. falciparum-infected erythrocytes, with localization in plasma membrane erythrocyte and parasite’s cytosol. The protein was not detected in parasitic food vacuole and haemoglobin-containing vesicles. Furthermore, in erythrocyte cytoplasm, plasminogen was associated with the parasite-derived membranous structures tubovesicular network (TVN) and Maurer’s clefts. Several proteins were identified in immunoprecipitation assay and may be involved in the delivery of plasminogen across the P. falciparum multiple compartments.

Conclusion

The findings here reported reveal new features regarding the acquisition of plasma proteins of the host by P. falciparum-infected erythrocytes, a mechanism that involves the exomembrane system, which is distinct from the haemoglobin uptake, clarifying a route that may be potentially targeted for inhibition studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference 1WHO. World Malaria Report 2019. Geneva, World Health Organization, 2019. 1WHO. World Malaria Report 2019. Geneva, World Health Organization, 2019.
2.
go back to reference Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.PubMed Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.PubMed
3.
go back to reference Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev. 2016;40:701–21.PubMedPubMedCentral Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev. 2016;40:701–21.PubMedPubMedCentral
4.
go back to reference Guidotti G, Hill RJ, Konigsberg W. The structure of human hemoglobin. II. The separation and amino acid composition of the tryptic peptides from the alpha and beta chains. J Biol Chem. 1962;237:2184–95.PubMed Guidotti G, Hill RJ, Konigsberg W. The structure of human hemoglobin. II. The separation and amino acid composition of the tryptic peptides from the alpha and beta chains. J Biol Chem. 1962;237:2184–95.PubMed
5.
go back to reference Kirk K. Membrane transport in the malaria-infected erythrocyte. Physiol Rev. 2001;81:495–537.PubMed Kirk K. Membrane transport in the malaria-infected erythrocyte. Physiol Rev. 2001;81:495–537.PubMed
6.
go back to reference Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci USA. 2006;103:8840–5.PubMed Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci USA. 2006;103:8840–5.PubMed
7.
go back to reference Martin RE, Kirk K. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood. 2007;109:2217–24.PubMed Martin RE, Kirk K. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood. 2007;109:2217–24.PubMed
8.
go back to reference Saliba KJ, Horner HA, Kirk K. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem. 1988;273:10190–5. Saliba KJ, Horner HA, Kirk K. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem. 1988;273:10190–5.
9.
go back to reference Kirk K, Lehane AM. Membrane transport in the malaria parasite and its host erythrocyte. J Biol Chem. 2014;457:1–18. Kirk K, Lehane AM. Membrane transport in the malaria parasite and its host erythrocyte. J Biol Chem. 2014;457:1–18.
10.
go back to reference Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci USA. 2012;109:E3278–E32873287.PubMed Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci USA. 2012;109:E3278–E32873287.PubMed
11.
go back to reference Divo AA, Geary TG, Davis N, Jensen JB. Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. J Protozool. 1985;32:59–64.PubMed Divo AA, Geary TG, Davis N, Jensen JB. Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. J Protozool. 1985;32:59–64.PubMed
12.
go back to reference Cobbold SA, Martin RE, Kirk K. Methionine transport in the malaria parasite Plasmodium falciparum. Int J Parasitol. 2011;41:125–35.PubMed Cobbold SA, Martin RE, Kirk K. Methionine transport in the malaria parasite Plasmodium falciparum. Int J Parasitol. 2011;41:125–35.PubMed
13.
go back to reference Ginsburg H, Kutner S, Krugliak M, Cabantchik ZI. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol Biochem Parasitol. 1985;14:313–22.PubMed Ginsburg H, Kutner S, Krugliak M, Cabantchik ZI. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol Biochem Parasitol. 1985;14:313–22.PubMed
14.
go back to reference Kirk K, Horner HA, Elford BC, Ellory JC, Newbold CI. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem. 1994;269:3339–47.PubMed Kirk K, Horner HA, Elford BC, Ellory JC, Newbold CI. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem. 1994;269:3339–47.PubMed
15.
16.
go back to reference Kirk K, Saliba KJ. Targeting nutrient uptake mechanisms in Plasmodium. Curr Drug Targets. 2007;8:75–88.PubMed Kirk K, Saliba KJ. Targeting nutrient uptake mechanisms in Plasmodium. Curr Drug Targets. 2007;8:75–88.PubMed
17.
go back to reference Boddey JA, Cowman AF. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu Rev Microbiol. 2013;67:243–69.PubMed Boddey JA, Cowman AF. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu Rev Microbiol. 2013;67:243–69.PubMed
18.
go back to reference Tilley L, McFadden G, Cowman A, Klonis N. Illuminating Plasmodium falciparum-infected red blood cells. Trends Parasitol. 2007;6:268–77. Tilley L, McFadden G, Cowman A, Klonis N. Illuminating Plasmodium falciparum-infected red blood cells. Trends Parasitol. 2007;6:268–77.
19.
go back to reference Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–5.PubMed Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–5.PubMed
20.
go back to reference Kirk K, Horner HA, Kirk J. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol. 1996;82:195–205.PubMed Kirk K, Horner HA, Kirk J. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol. 1996;82:195–205.PubMed
21.
go back to reference Desai SA, Bezrukov SM, Zimmerberg J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature. 2000;406:1001–5.PubMed Desai SA, Bezrukov SM, Zimmerberg J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature. 2000;406:1001–5.PubMed
22.
go back to reference Kushwaha AK, Apolis L, Ito D, Desai SA. Increased Ca(++) uptake by erythrocytes infected with malaria parasites: evidence for exported proteins and novel inhibitors. Cell Microbiol. 2018;20:e12853.PubMedPubMedCentral Kushwaha AK, Apolis L, Ito D, Desai SA. Increased Ca(++) uptake by erythrocytes infected with malaria parasites: evidence for exported proteins and novel inhibitors. Cell Microbiol. 2018;20:e12853.PubMedPubMedCentral
23.
go back to reference Gazarini ML, Thomas AP, Pozzan T, Garcia CR. Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. J Cell Biol. 2003;161:103–10.PubMedPubMedCentral Gazarini ML, Thomas AP, Pozzan T, Garcia CR. Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. J Cell Biol. 2003;161:103–10.PubMedPubMedCentral
24.
go back to reference Mesén-Ramírez P, Bergmann B, Tran TT, Garten M, Stäcker J, Naranjo-Prado I, et al. EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol. 2019;17:e3000473.PubMedPubMedCentral Mesén-Ramírez P, Bergmann B, Tran TT, Garten M, Stäcker J, Naranjo-Prado I, et al. EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol. 2019;17:e3000473.PubMedPubMedCentral
25.
go back to reference Mizuno Y, Kawazu SI, Kano S, Watanabe N, Matsuura T, Ohtomo H. In-vitro uptake of vitamin A by Plasmodium falciparum. Ann Trop Med Parasitol. 2003;97:237–43.PubMed Mizuno Y, Kawazu SI, Kano S, Watanabe N, Matsuura T, Ohtomo H. In-vitro uptake of vitamin A by Plasmodium falciparum. Ann Trop Med Parasitol. 2003;97:237–43.PubMed
26.
go back to reference El Tahir A, Malhotra P, Chauhan VS. Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes. Malar J. 2003;2:11.PubMedPubMedCentral El Tahir A, Malhotra P, Chauhan VS. Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes. Malar J. 2003;2:11.PubMedPubMedCentral
27.
go back to reference Koncarevic S, Rohrbach P, Deponte M, Krohne G, Prieto JH, Yates J 3rd, et al. The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci USA. 2009;106:13323–8.PubMed Koncarevic S, Rohrbach P, Deponte M, Krohne G, Prieto JH, Yates J 3rd, et al. The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci USA. 2009;106:13323–8.PubMed
28.
go back to reference Tougan T, Edula JR, Takashima E, Morita M, Shinohara M, Shinohara A, et al. Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5. Sci Rep. 2018;8:5052.PubMedPubMedCentral Tougan T, Edula JR, Takashima E, Morita M, Shinohara M, Shinohara A, et al. Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5. Sci Rep. 2018;8:5052.PubMedPubMedCentral
29.
go back to reference Bagnaresi P, Barros NM, Assis DM, Melo PM, Fonseca RG, Juliano MA, et al. Intracellular proteolysis of kininogen by malaria parasites promotes release of active kinins. Malar J. 2012;11:156.PubMedPubMedCentral Bagnaresi P, Barros NM, Assis DM, Melo PM, Fonseca RG, Juliano MA, et al. Intracellular proteolysis of kininogen by malaria parasites promotes release of active kinins. Malar J. 2012;11:156.PubMedPubMedCentral
30.
go back to reference Melo PM, Bagnaresi P, Paschoalin T, Hirata IY, Gazarini ML, Carmona AK. Plasmodium falciparum proteases hydrolyze plasminogen, generating angiostatin-like fragments. Mol Biochem Parasitol. 2014;193:45–544.PubMed Melo PM, Bagnaresi P, Paschoalin T, Hirata IY, Gazarini ML, Carmona AK. Plasmodium falciparum proteases hydrolyze plasminogen, generating angiostatin-like fragments. Mol Biochem Parasitol. 2014;193:45–544.PubMed
31.
go back to reference Aisina RB, Mukhametova LI. Structure and functions of plasminogen/plasmin system. Bioorg Khim. 2014;40:642–57.PubMed Aisina RB, Mukhametova LI. Structure and functions of plasminogen/plasmin system. Bioorg Khim. 2014;40:642–57.PubMed
32.
go back to reference Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.PubMed Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.PubMed
33.
go back to reference Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMed Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMed
34.
go back to reference Low TY, Seow TK, Chung MC. Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2002;2:1229–39.PubMed Low TY, Seow TK, Chung MC. Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2002;2:1229–39.PubMed
35.
go back to reference Hsiao LL, Howard RJ, Aikawa M, Taraschi TF. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem J. 1991;274:121–32.PubMedPubMedCentral Hsiao LL, Howard RJ, Aikawa M, Taraschi TF. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem J. 1991;274:121–32.PubMedPubMedCentral
36.
go back to reference Kitamura K, Kishi-Itakura C, Tsuboi T, Sato S, Kita K, Ohta N, et al. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS ONE. 2012;7:e42977.PubMedPubMedCentral Kitamura K, Kishi-Itakura C, Tsuboi T, Sato S, Kita K, Ohta N, et al. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS ONE. 2012;7:e42977.PubMedPubMedCentral
37.
go back to reference Elsworth B, Sanders PR, Nebl T, Batinovic S, Kalanon M, Nie CQ, et al. Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150. Cell Microb. 2016;18:1551–699. Elsworth B, Sanders PR, Nebl T, Batinovic S, Kalanon M, Nie CQ, et al. Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150. Cell Microb. 2016;18:1551–699.
38.
go back to reference Sakata-Kato T, Wirth DF. A novel methodology for bioenergetic analysis of Plasmodium falciparum reveals a glucose-regulated metabolic shift and enables mode of action analyses of mitochondrial inhibitors. ACS Infect Dis. 2016;2:903–16.PubMedPubMedCentral Sakata-Kato T, Wirth DF. A novel methodology for bioenergetic analysis of Plasmodium falciparum reveals a glucose-regulated metabolic shift and enables mode of action analyses of mitochondrial inhibitors. ACS Infect Dis. 2016;2:903–16.PubMedPubMedCentral
39.
go back to reference Gomez-Lorenzo MG, Rodríguez-Alejandre A, Moliner-Cubel S, Martínez-Hoyos M, Bahamontes-Rosa N, Gonzalez Del Rio R, et al. Functional screening of selective mitochondrial inhibitors of Plasmodium. Int J Parasitol Drugs Drug Resist. 2018;8:295–303.PubMedPubMedCentral Gomez-Lorenzo MG, Rodríguez-Alejandre A, Moliner-Cubel S, Martínez-Hoyos M, Bahamontes-Rosa N, Gonzalez Del Rio R, et al. Functional screening of selective mitochondrial inhibitors of Plasmodium. Int J Parasitol Drugs Drug Resist. 2018;8:295–303.PubMedPubMedCentral
40.
go back to reference Ehlgen F, Pham JS, de Koning-Ward T, Cowman AF, Ralph SA. Investigation of the Plasmodium falciparum food vacuole through inducible expression of the chloroquine resistance transporter (PfCRT). PLoS ONE. 2012;7:e38781.PubMedPubMedCentral Ehlgen F, Pham JS, de Koning-Ward T, Cowman AF, Ralph SA. Investigation of the Plasmodium falciparum food vacuole through inducible expression of the chloroquine resistance transporter (PfCRT). PLoS ONE. 2012;7:e38781.PubMedPubMedCentral
41.
go back to reference Wong W, Bai XC, Sleebs BE, Triglia T, Brown A, Thompson JK, et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat Microbiol. 2017;2:17031.PubMedPubMedCentral Wong W, Bai XC, Sleebs BE, Triglia T, Brown A, Thompson JK, et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat Microbiol. 2017;2:17031.PubMedPubMedCentral
42.
go back to reference Dluzewski AR, Garcia CR. Inhibition of invasion and intraerythrocytic development of Plasmodium falciparum by kinase inhibitors. Experientia. 1996;52:621–3.PubMed Dluzewski AR, Garcia CR. Inhibition of invasion and intraerythrocytic development of Plasmodium falciparum by kinase inhibitors. Experientia. 1996;52:621–3.PubMed
43.
go back to reference Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, et al. A newly discovered protein export machine in malaria parasites. Nature. 2009;459:945–9.PubMedPubMedCentral Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, et al. A newly discovered protein export machine in malaria parasites. Nature. 2009;459:945–9.PubMedPubMedCentral
44.
go back to reference Pouvelle B, Spiegel R, Hsiao L, Howard RJ, Morris RL, Thomas AP, et al. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991;353:73–5.PubMed Pouvelle B, Spiegel R, Hsiao L, Howard RJ, Morris RL, Thomas AP, et al. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991;353:73–5.PubMed
45.
go back to reference Fujioka H, Aikawa M. Morphological changes of clefts in Plasmodium-infected erythrocytes under adverse conditions. Exp Parasitol. 1993;76:302–7.PubMed Fujioka H, Aikawa M. Morphological changes of clefts in Plasmodium-infected erythrocytes under adverse conditions. Exp Parasitol. 1993;76:302–7.PubMed
46.
go back to reference Haldar K, Uyetake L. The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol. 1992;50:161–77.PubMed Haldar K, Uyetake L. The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol. 1992;50:161–77.PubMed
47.
go back to reference Hibbs AR, Stenzel DJ, Saul A. Macromolecular transport in malaria–does the duct exist? Eur J Cell Biol. 1997;72:182–8.PubMed Hibbs AR, Stenzel DJ, Saul A. Macromolecular transport in malaria–does the duct exist? Eur J Cell Biol. 1997;72:182–8.PubMed
48.
go back to reference Lauer SA, Rathod PK, Ghori N, Haldar K. A membrane network for nutrient import in red cells infected with the malaria parasite. Science. 1997;276:1122–5.PubMed Lauer SA, Rathod PK, Ghori N, Haldar K. A membrane network for nutrient import in red cells infected with the malaria parasite. Science. 1997;276:1122–5.PubMed
49.
go back to reference Bachmann A, Scholz JA, Janßen M, Klinkert MQ, Tannich E, Bruchhaus I, et al. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malar J. 2015;14:274.PubMedPubMedCentral Bachmann A, Scholz JA, Janßen M, Klinkert MQ, Tannich E, Bruchhaus I, et al. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malar J. 2015;14:274.PubMedPubMedCentral
50.
go back to reference Kaur J, Hora R. '2TM proteins': an antigenically diverse superfamily with variable functions and export pathways. PeerJ. 2018;6:e4757.PubMedPubMedCentral Kaur J, Hora R. '2TM proteins': an antigenically diverse superfamily with variable functions and export pathways. PeerJ. 2018;6:e4757.PubMedPubMedCentral
51.
go back to reference Milani KJ, Schneider TG, Taraschi TF. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes. Eukaryot Cell. 2015;14:415–26.PubMedPubMedCentral Milani KJ, Schneider TG, Taraschi TF. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes. Eukaryot Cell. 2015;14:415–26.PubMedPubMedCentral
52.
go back to reference Lazarus MD, Schneider TG, Taraschi TF. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci. 2008;121:1937–49.PubMedPubMedCentral Lazarus MD, Schneider TG, Taraschi TF. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci. 2008;121:1937–49.PubMedPubMedCentral
53.
go back to reference Tougan T, Edula JR, Morita M, Takashima E, Honma H, Tsuboi T, et al. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malar J. 2020;19:155.PubMedPubMedCentral Tougan T, Edula JR, Morita M, Takashima E, Honma H, Tsuboi T, et al. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malar J. 2020;19:155.PubMedPubMedCentral
Metadata
Title
Human plasma plasminogen internalization route in Plasmodium falciparum-infected erythrocytes
Authors
Sarah El Chamy Maluf
Marcelo Yudi Icimoto
Pollyana Maria Saud Melo
Alexandre Budu
Rita Coimbra
Marcos Leoni Gazarini
Adriana Karaoglanovic Carmona
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03377-4

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue