Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Chloroquin | Research

Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya

Authors: Winnie Chebore, Zhiyong Zhou, Nelli Westercamp, Kephas Otieno, Ya Ping Shi, Sheila B. Sergent, Kelsey Anne Rondini, Samaly Souza Svigel, Benard Guyah, Venkatachalam Udhayakumar, Eric S. Halsey, Aaron M. Samuels, Simon Kariuki

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether−lumefantrine (AL) and Dihydroartemisinin−piperaquine (DP) from samples collected from children aged 6–59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017.

Methods

Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction.

Results

No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant.

Conclusion

The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions.
Literature
1.
go back to reference WHO. World malaria report 2019. Geneva: World Health Organization; 2019. WHO. World malaria report 2019. Geneva: World Health Organization; 2019.
2.
go back to reference National Malaria Control Programme (NMCP) KNBoSK, and ICF International. Kenya Malaria Indicator Survey 2015. Nairobi, Kenya, and Rockville, Maryland, USA: NMCP, KNBS, and ICF International; 2016. National Malaria Control Programme (NMCP) KNBoSK, and ICF International. Kenya Malaria Indicator Survey 2015. Nairobi, Kenya, and Rockville, Maryland, USA: NMCP, KNBS, and ICF International; 2016.
3.
go back to reference Otienoburu SD, Maiga-Ascofare O, Schramm B, Jullien V, Jones JJ, Zolia YM, et al. Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate-amodiaquine fixed dose combination or Artemether−lumefantrine in Liberia. Malar J. 2016;15:452.PubMedPubMedCentral Otienoburu SD, Maiga-Ascofare O, Schramm B, Jullien V, Jones JJ, Zolia YM, et al. Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate-amodiaquine fixed dose combination or Artemether−lumefantrine in Liberia. Malar J. 2016;15:452.PubMedPubMedCentral
4.
go back to reference Ogutu BR, Onyango KO, Koskei N, Omondi EK, Ongecha JM, Otieno GA, et al. Efficacy and safety of Artemether−lumefantrine and Dihydroartemisinin−piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children aged less than five years: results of an open-label, randomized, single-centre study. Malar J. 2014;13:33.PubMedPubMedCentral Ogutu BR, Onyango KO, Koskei N, Omondi EK, Ongecha JM, Otieno GA, et al. Efficacy and safety of Artemether−lumefantrine and Dihydroartemisinin−piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children aged less than five years: results of an open-label, randomized, single-centre study. Malar J. 2014;13:33.PubMedPubMedCentral
5.
go back to reference WHO. Artemisinin and artemisinin-based combination therapy resistance. Geneva: World Health Organization; 2018. WHO. Artemisinin and artemisinin-based combination therapy resistance. Geneva: World Health Organization; 2018.
6.
go back to reference Talundzic E, Ravishankar S, Kelley J, Patel D, Plucinski M, Schmedes S, et al. Next-Generation Sequencing and Bioinformatics Protocol for Malaria Drug Resistance Marker Surveillance. Antimicrob Agents Chemother. 2018;62:e02474.PubMedPubMedCentral Talundzic E, Ravishankar S, Kelley J, Patel D, Plucinski M, Schmedes S, et al. Next-Generation Sequencing and Bioinformatics Protocol for Malaria Drug Resistance Marker Surveillance. Antimicrob Agents Chemother. 2018;62:e02474.PubMedPubMedCentral
7.
go back to reference Picot S, Olliaro P, de Monbrison F, Bienvenu AL, Price RN, Ringwald P. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J. 2009;8:89.PubMedPubMedCentral Picot S, Olliaro P, de Monbrison F, Bienvenu AL, Price RN, Ringwald P. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J. 2009;8:89.PubMedPubMedCentral
8.
go back to reference Mohammed A, Ndaro A, Kalinga A, Manjurano A, Mosha JF, Mosha DF, et al. Trends in chloroquine resistance marker, Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar J. 2013;12:415.PubMedPubMedCentral Mohammed A, Ndaro A, Kalinga A, Manjurano A, Mosha JF, Mosha DF, et al. Trends in chloroquine resistance marker, Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar J. 2013;12:415.PubMedPubMedCentral
9.
go back to reference Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol. 2000;108:13–23.PubMed Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol. 2000;108:13–23.PubMed
10.
go back to reference Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403:906–9.PubMed Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403:906–9.PubMed
11.
go back to reference Duraisingh MT, Roper C, Walliker D, Warhurst DC. Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol. 2000;36:955–61.PubMed Duraisingh MT, Roper C, Walliker D, Warhurst DC. Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol. 2000;36:955–61.PubMed
12.
go back to reference Mwai L, Kiara SM, Abdirahman A, Pole L, Rippert A, Diriye A, et al. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1. Antimicrob Agents Chemother. 2009;53:5069–73.PubMedPubMedCentral Mwai L, Kiara SM, Abdirahman A, Pole L, Rippert A, Diriye A, et al. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1. Antimicrob Agents Chemother. 2009;53:5069–73.PubMedPubMedCentral
13.
go back to reference Tumwebaze P, Conrad MD, Walakira A, LeClair N, Byaruhanga O, Nakazibwe C, et al. Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from ugandan children. Antimicrob Agents Chemother. 2015;59:3018–30.PubMedPubMedCentral Tumwebaze P, Conrad MD, Walakira A, LeClair N, Byaruhanga O, Nakazibwe C, et al. Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from ugandan children. Antimicrob Agents Chemother. 2015;59:3018–30.PubMedPubMedCentral
14.
go back to reference Malmberg M, Ferreira PE, Tarning J, Ursing J, Ngasala B, Bjorkman A, et al. Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J Infect Dis. 2012;207:842–7.PubMedPubMedCentral Malmberg M, Ferreira PE, Tarning J, Ursing J, Ngasala B, Bjorkman A, et al. Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J Infect Dis. 2012;207:842–7.PubMedPubMedCentral
15.
go back to reference Mbaye A, Dieye B, Ndiaye YD, Bei AK, Muna A, Deme AB, et al. Selection of N86F184D1246 haplotype of Pfmrd1 gene by Artemether−lumefantrine drug pressure on Plasmodium falciparum populations in Senegal. Malar J. 2016;15:433.PubMedPubMedCentral Mbaye A, Dieye B, Ndiaye YD, Bei AK, Muna A, Deme AB, et al. Selection of N86F184D1246 haplotype of Pfmrd1 gene by Artemether−lumefantrine drug pressure on Plasmodium falciparum populations in Senegal. Malar J. 2016;15:433.PubMedPubMedCentral
16.
go back to reference Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257–63.PubMed Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257–63.PubMed
17.
go back to reference Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis. 2001;184:770–6.PubMed Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis. 2001;184:770–6.PubMed
18.
go back to reference Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis. 2017;17:174–83.PubMedPubMedCentral Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis. 2017;17:174–83.PubMedPubMedCentral
19.
go back to reference Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.PubMed Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.PubMed
20.
go back to reference Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.PubMed Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.PubMed
21.
go back to reference Dokomajilar C, Nsobya SL, Greenhouse B, Rosenthal PJ, Dorsey G. Selection of Plasmodium falciparum pfmdr1 alleles following therapy with Artemether−lumefantrine in an area of Uganda where malaria is highly endemic. Antimicrob Agents Chemother. 2006;50:1893–5.PubMedPubMedCentral Dokomajilar C, Nsobya SL, Greenhouse B, Rosenthal PJ, Dorsey G. Selection of Plasmodium falciparum pfmdr1 alleles following therapy with Artemether−lumefantrine in an area of Uganda where malaria is highly endemic. Antimicrob Agents Chemother. 2006;50:1893–5.PubMedPubMedCentral
22.
go back to reference Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O’Neil M, et al. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by Artemether−lumefantrine in Nigerian children with uncomplicated falciparum malaria. Antimicrob Agents Chemother. 2009;53:888–95.PubMed Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O’Neil M, et al. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by Artemether−lumefantrine in Nigerian children with uncomplicated falciparum malaria. Antimicrob Agents Chemother. 2009;53:888–95.PubMed
23.
go back to reference Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJ, Mutabingwa TK, Sutherland CJ, et al. Amodiaquine and Artemether−lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother. 2007;51:991–7.PubMed Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJ, Mutabingwa TK, Sutherland CJ, et al. Amodiaquine and Artemether−lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother. 2007;51:991–7.PubMed
24.
go back to reference Sisowath C, Stromberg J, Martensson A, Msellem M, Obondo C, Bjorkman A, et al. In vivo selection of Plasmodium falciparum pfmdr1 86 N coding alleles by Artemether−lumefantrine (Coartem). J Infect Dis. 2005;191:1014–7.PubMed Sisowath C, Stromberg J, Martensson A, Msellem M, Obondo C, Bjorkman A, et al. In vivo selection of Plasmodium falciparum pfmdr1 86 N coding alleles by Artemether−lumefantrine (Coartem). J Infect Dis. 2005;191:1014–7.PubMed
25.
go back to reference Zongo I, Dorsey G, Rouamba N, Tinto H, Dokomajilar C, Guiguemde RT, et al. Artemether−lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial. Lancet. 2007;369:491–8.PubMed Zongo I, Dorsey G, Rouamba N, Tinto H, Dokomajilar C, Guiguemde RT, et al. Artemether−lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial. Lancet. 2007;369:491–8.PubMed
26.
go back to reference Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.PubMedPubMedCentral Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.PubMedPubMedCentral
27.
go back to reference Achieng AO, Muiruri P, Ingasia LA, Opot BH, Juma DW, Yeda R, et al. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by Artemether−lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya. Int J Parasitol Drugs Drug Resist. 2015;5:92–9.PubMedPubMedCentral Achieng AO, Muiruri P, Ingasia LA, Opot BH, Juma DW, Yeda R, et al. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by Artemether−lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya. Int J Parasitol Drugs Drug Resist. 2015;5:92–9.PubMedPubMedCentral
28.
go back to reference Hemming-Schroeder E, Umukoro E, Lo E, Fung B, Tomas-Domingo P, Zhou G, et al. Impacts of antimalarial drugs on Plasmodium falciparum drug resistance markers, Western Kenya, 2003-2015. Am J Trop Med Hyg. 2018;98:692–9.PubMedPubMedCentral Hemming-Schroeder E, Umukoro E, Lo E, Fung B, Tomas-Domingo P, Zhou G, et al. Impacts of antimalarial drugs on Plasmodium falciparum drug resistance markers, Western Kenya, 2003-2015. Am J Trop Med Hyg. 2018;98:692–9.PubMedPubMedCentral
29.
go back to reference Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2015;211:1352–5.PubMed Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2015;211:1352–5.PubMed
30.
go back to reference Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. Epidemiology of drug-resistant malaria. Lancet Infect Dis. 2002;2:209–18.PubMed Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. Epidemiology of drug-resistant malaria. Lancet Infect Dis. 2002;2:209–18.PubMed
31.
go back to reference Venkatesan M, Gadalla NB, Stepniewska K, Dahal P, Nsanzabana C, Moriera C, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after Artemether−lumefantrine and artesunate-amodiaquine. Am J Trop Med Hyg. 2014;91:833–43.PubMedPubMedCentral Venkatesan M, Gadalla NB, Stepniewska K, Dahal P, Nsanzabana C, Moriera C, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after Artemether−lumefantrine and artesunate-amodiaquine. Am J Trop Med Hyg. 2014;91:833–43.PubMedPubMedCentral
32.
go back to reference Westercamp N, Owidhi M, Otieno K, Chebore W, Buff A, Desai M, et al. Efficacy of Artemether−lumefantrine and Dihydroartemisinin−piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria among children in western Kenya. 2020 (In press). Westercamp N, Owidhi M, Otieno K, Chebore W, Buff A, Desai M, et al. Efficacy of Artemether−lumefantrine and Dihydroartemisinin−piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria among children in western Kenya. 2020 (In press).
33.
go back to reference WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009. WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
34.
go back to reference Odero NA, Samuels AM, Odongo W, Abong’o B, Gimnig J, Otieno K, et al. Community-based intermittent mass testing and treatment for malaria in an area of high transmission intensity, western Kenya: development of study site infrastructure and lessons learned. Malar J. 2019;18:255.PubMedPubMedCentral Odero NA, Samuels AM, Odongo W, Abong’o B, Gimnig J, Otieno K, et al. Community-based intermittent mass testing and treatment for malaria in an area of high transmission intensity, western Kenya: development of study site infrastructure and lessons learned. Malar J. 2019;18:255.PubMedPubMedCentral
36.
go back to reference Agarwal A, McMorrow M, Onyango P, Otieno K, Odero C, Williamson J, et al. A randomized trial of Artemether−lumefantrine and Dihydroartemisinin−piperaquine in the treatment of uncomplicated malaria among children in western Kenya. Malar J. 2013;12:254.PubMedPubMedCentral Agarwal A, McMorrow M, Onyango P, Otieno K, Odero C, Williamson J, et al. A randomized trial of Artemether−lumefantrine and Dihydroartemisinin−piperaquine in the treatment of uncomplicated malaria among children in western Kenya. Malar J. 2013;12:254.PubMedPubMedCentral
37.
go back to reference Mens PF, Sawa P, van Amsterdam SM, Versteeg I, Omar SA, Schallig HD, et al. A randomized trial to monitor the efficacy and effectiveness by QT-NASBA of Artemether−lumefantrine versus Dihydroartemisinin−piperaquine for treatment and transmission control of uncomplicated Plasmodium falciparum malaria in western Kenya. Malar J. 2008;7:237.PubMedPubMedCentral Mens PF, Sawa P, van Amsterdam SM, Versteeg I, Omar SA, Schallig HD, et al. A randomized trial to monitor the efficacy and effectiveness by QT-NASBA of Artemether−lumefantrine versus Dihydroartemisinin−piperaquine for treatment and transmission control of uncomplicated Plasmodium falciparum malaria in western Kenya. Malar J. 2008;7:237.PubMedPubMedCentral
38.
go back to reference Sawa P, Shekalaghe SA, Drakeley CJ, Sutherland CJ, Mweresa CK, Baidjoe AY, et al. Malaria transmission after Artemether−lumefantrine and Dihydroartemisinin−piperaquine: a randomized trial. J Infect Dis. 2013;207:1637–45.PubMed Sawa P, Shekalaghe SA, Drakeley CJ, Sutherland CJ, Mweresa CK, Baidjoe AY, et al. Malaria transmission after Artemether−lumefantrine and Dihydroartemisinin−piperaquine: a randomized trial. J Infect Dis. 2013;207:1637–45.PubMed
39.
go back to reference Woodring JV, Ogutu B, Schnabel D, Waitumbi JN, Olsen CH, Walsh DS, et al. Evaluation of recurrent parasitemia after Artemether−lumefantrine treatment for uncomplicated malaria in children in western Kenya. Am J Trop Med Hyg. 2010;83:458–64.PubMedPubMedCentral Woodring JV, Ogutu B, Schnabel D, Waitumbi JN, Olsen CH, Walsh DS, et al. Evaluation of recurrent parasitemia after Artemether−lumefantrine treatment for uncomplicated malaria in children in western Kenya. Am J Trop Med Hyg. 2010;83:458–64.PubMedPubMedCentral
40.
go back to reference WHO. Recommended Genotyping Procedures (RGPs) to identify parasite populations. Geneva: World Health Organization; 2008. WHO. Recommended Genotyping Procedures (RGPs) to identify parasite populations. Geneva: World Health Organization; 2008.
41.
go back to reference Souza SS, L’Episcopia M, Severini C, Udhayakumar V, Lucchi NW. Photo-induced electron transfer real-time PCR for detection of Plasmodium falciparum plasmepsin 2 gene copy number. Antimicrob Agents Chemother. 2018;62:e00317–8.PubMedPubMedCentral Souza SS, L’Episcopia M, Severini C, Udhayakumar V, Lucchi NW. Photo-induced electron transfer real-time PCR for detection of Plasmodium falciparum plasmepsin 2 gene copy number. Antimicrob Agents Chemother. 2018;62:e00317–8.PubMedPubMedCentral
42.
go back to reference Talundzic E, Chenet SM, Goldman IF, Patel DS, Nelson JA, Plucinski MM, et al. Genetic analysis and species specific amplification of the artemisinin resistance-associated Kelch Propeller domain in P. falciparum and P. vivax. PLoS One. 2015;10:e0136099.PubMedPubMedCentral Talundzic E, Chenet SM, Goldman IF, Patel DS, Nelson JA, Plucinski MM, et al. Genetic analysis and species specific amplification of the artemisinin resistance-associated Kelch Propeller domain in P. falciparum and P. vivax. PLoS One. 2015;10:e0136099.PubMedPubMedCentral
43.
go back to reference Griffing S, Syphard L, Sridaran S, McCollum AM, Mixson-Hayden T, Vinayak S, et al. pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela. Antimicrob Agents Chemother. 2010;54:1572–9.PubMedPubMedCentral Griffing S, Syphard L, Sridaran S, McCollum AM, Mixson-Hayden T, Vinayak S, et al. pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela. Antimicrob Agents Chemother. 2010;54:1572–9.PubMedPubMedCentral
44.
go back to reference Vinayak S, Alam MT, Sem R, Shah NK, Susanti AI, Lim P, et al. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis. 2010;201:1551–60.PubMed Vinayak S, Alam MT, Sem R, Shah NK, Susanti AI, Lim P, et al. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis. 2010;201:1551–60.PubMed
45.
go back to reference Mejia Torres RE, Banegas EI, Mendoza M, Diaz C, Bucheli ST, Fontecha GA, et al. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras. Am J Trop Med Hyg. 2013;88:850–4.PubMed Mejia Torres RE, Banegas EI, Mendoza M, Diaz C, Bucheli ST, Fontecha GA, et al. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras. Am J Trop Med Hyg. 2013;88:850–4.PubMed
46.
go back to reference Ljolje D, Dimbu PR, Kelley J, Goldman I, Nace D, Macaia A, et al. Prevalence of molecular markers of artemisinin and lumefantrine resistance among patients with uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2015. Malar J. 2018;17:84.PubMedPubMedCentral Ljolje D, Dimbu PR, Kelley J, Goldman I, Nace D, Macaia A, et al. Prevalence of molecular markers of artemisinin and lumefantrine resistance among patients with uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2015. Malar J. 2018;17:84.PubMedPubMedCentral
47.
go back to reference Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007;77:181–92.PubMed Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007;77:181–92.PubMed
48.
go back to reference Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, Beshir KB. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J. 2016;15:36.PubMedPubMedCentral Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, Beshir KB. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J. 2016;15:36.PubMedPubMedCentral
49.
go back to reference Wamae K, Okanda D, Ndwiga L, Osoti V, Kimenyi KM, Abdi AI, et al. No evidence of P. falciparum K13 artemisinin conferring mutations over a 24-year analysis in Coastal Kenya, but a near complete reversion to chloroquine wild type parasites. Antimicrob Agents Chemother. 2019;e01067-19. Wamae K, Okanda D, Ndwiga L, Osoti V, Kimenyi KM, Abdi AI, et al. No evidence of P. falciparum K13 artemisinin conferring mutations over a 24-year analysis in Coastal Kenya, but a near complete reversion to chloroquine wild type parasites. Antimicrob Agents Chemother. 2019;e01067-19.
50.
go back to reference Nguetse CN, Adegnika AA, Agbenyega T, Ogutu BR, Krishna S, Kremsner PG, et al. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria. Malar J. 2017;16:217.PubMedPubMedCentral Nguetse CN, Adegnika AA, Agbenyega T, Ogutu BR, Krishna S, Kremsner PG, et al. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria. Malar J. 2017;16:217.PubMedPubMedCentral
51.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.PubMedPubMedCentral Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.PubMedPubMedCentral
52.
go back to reference Kaur H, Clarke S, Lalani M, Phanouvong S, Guerin P, McLoughlin A, et al. Fake anti-malarials: start with the facts. Malar J. 2016;15:86.PubMedPubMedCentral Kaur H, Clarke S, Lalani M, Phanouvong S, Guerin P, McLoughlin A, et al. Fake anti-malarials: start with the facts. Malar J. 2016;15:86.PubMedPubMedCentral
53.
go back to reference Dokomajilar C, Lankoande ZM, Dorsey G, Zongo I, Ouedraogo JB, Rosenthal PJ. Roles of specific Plasmodium falciparum mutations in resistance to amodiaquine and sulfadoxine-pyrimethamine in Burkina Faso. Am J Trop Med Hyg. 2006;75:162–5.PubMed Dokomajilar C, Lankoande ZM, Dorsey G, Zongo I, Ouedraogo JB, Rosenthal PJ. Roles of specific Plasmodium falciparum mutations in resistance to amodiaquine and sulfadoxine-pyrimethamine in Burkina Faso. Am J Trop Med Hyg. 2006;75:162–5.PubMed
54.
go back to reference Some AF, Zongo I, Compaore YD, Sakande S, Nosten F, Ouedraogo JB, et al. Selection of drug resistance-mediating Plasmodium falciparum genetic polymorphisms by seasonal malaria chemoprevention in Burkina Faso. Antimicrob Agents Chemother. 2014;58:3660–5.PubMedPubMedCentral Some AF, Zongo I, Compaore YD, Sakande S, Nosten F, Ouedraogo JB, et al. Selection of drug resistance-mediating Plasmodium falciparum genetic polymorphisms by seasonal malaria chemoprevention in Burkina Faso. Antimicrob Agents Chemother. 2014;58:3660–5.PubMedPubMedCentral
55.
go back to reference Hastings IM, Ward SA. Coartem (Artemether−lumefantrine) in Africa: the beginning of the end? J Infect Dis. 2005;192:1303–4.PubMed Hastings IM, Ward SA. Coartem (Artemether−lumefantrine) in Africa: the beginning of the end? J Infect Dis. 2005;192:1303–4.PubMed
56.
go back to reference Wurtz N, Fall B, Pascual A, Fall M, Baret E, Camara C, et al. Role of Pfmdr1 in in vitro Plasmodium falciparum susceptibility to chloroquine, quinine, monodesethylamodiaquine, mefloquine, lumefantrine, and dihydroartemisinin. Antimicrob Agents Chemother. 2014;58:7032–40.PubMedPubMedCentral Wurtz N, Fall B, Pascual A, Fall M, Baret E, Camara C, et al. Role of Pfmdr1 in in vitro Plasmodium falciparum susceptibility to chloroquine, quinine, monodesethylamodiaquine, mefloquine, lumefantrine, and dihydroartemisinin. Antimicrob Agents Chemother. 2014;58:7032–40.PubMedPubMedCentral
57.
go back to reference Taylor AR, Flegg JA, Holmes CC, Guerin PJ, Sibley CH, Conrad MD, et al. Artemether−lumefantrine and Dihydroartemisinin−piperaquine exert inverse selective pressure on Plasmodium falciparum drug sensitivity-associated haplotypes in Uganda. Open Forum Infect Dis. 2017;4:ofw229.PubMed Taylor AR, Flegg JA, Holmes CC, Guerin PJ, Sibley CH, Conrad MD, et al. Artemether−lumefantrine and Dihydroartemisinin−piperaquine exert inverse selective pressure on Plasmodium falciparum drug sensitivity-associated haplotypes in Uganda. Open Forum Infect Dis. 2017;4:ofw229.PubMed
58.
go back to reference Lucchi NW, Komino F, Okoth SA, Goldman I, Onyona P, Wiegand RE, et al. In vitro and molecular surveillance for antimalarial drug resistance in Plasmodium falciparum parasites in Western Kenya reveals sustained artemisinin sensitivity and increased chloroquine sensitivity. Antimicrob Agents Chemother. 2015;59:7540–7.PubMedPubMedCentral Lucchi NW, Komino F, Okoth SA, Goldman I, Onyona P, Wiegand RE, et al. In vitro and molecular surveillance for antimalarial drug resistance in Plasmodium falciparum parasites in Western Kenya reveals sustained artemisinin sensitivity and increased chloroquine sensitivity. Antimicrob Agents Chemother. 2015;59:7540–7.PubMedPubMedCentral
59.
go back to reference Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, et al. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis. 2003;187:1870–5.PubMed Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, et al. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis. 2003;187:1870–5.PubMed
60.
go back to reference Dagnogo O, Ako AB, Ouattara L, Dago ND, Coulibaly DN, Toure AO, et al. Towards a re-emergence of chloroquine sensitivity in Cote d’Ivoire? Malar J. 2018;17:413.PubMedPubMedCentral Dagnogo O, Ako AB, Ouattara L, Dago ND, Coulibaly DN, Toure AO, et al. Towards a re-emergence of chloroquine sensitivity in Cote d’Ivoire? Malar J. 2018;17:413.PubMedPubMedCentral
61.
go back to reference Callaghan PS, Siriwardana A, Hassett MR, Roepe PD. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology. Malar J. 2016;15:186.PubMedPubMedCentral Callaghan PS, Siriwardana A, Hassett MR, Roepe PD. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology. Malar J. 2016;15:186.PubMedPubMedCentral
62.
go back to reference Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view. Mem Inst Oswaldo Cruz. 2013;108:947–61.PubMedPubMedCentral Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view. Mem Inst Oswaldo Cruz. 2013;108:947–61.PubMedPubMedCentral
63.
go back to reference Callaghan PS, Hassett MR, Roepe PD. Functional comparison of 45 naturally occurring isoforms of the Plasmodium falciparum chloroquine resistance transporter (PfCRT). Biochemistry. 2015;54:5083–94.PubMed Callaghan PS, Hassett MR, Roepe PD. Functional comparison of 45 naturally occurring isoforms of the Plasmodium falciparum chloroquine resistance transporter (PfCRT). Biochemistry. 2015;54:5083–94.PubMed
Metadata
Title
Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya
Authors
Winnie Chebore
Zhiyong Zhou
Nelli Westercamp
Kephas Otieno
Ya Ping Shi
Sheila B. Sergent
Kelsey Anne Rondini
Samaly Souza Svigel
Benard Guyah
Venkatachalam Udhayakumar
Eric S. Halsey
Aaron M. Samuels
Simon Kariuki
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03358-7

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue