Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Malaria | Research

Plasmodium vivax liver stage assay platforms using Indian clinical isolates

Authors: Pradeep A. Subramani, Neha Vartak-Sharma, Seetha Sreekumar, Pallavi Mathur, Bhavana Nayer, Sushrut Dakhore, Sowmya K. Basavanna, Devaiah M. Kalappa, Ramya V. Krishnamurthy, Benudhar Mukhi, Priyasha Mishra, Noriko Yoshida, Susanta Kumar Ghosh, Radhakrishan Shandil, Shridhar Narayanan, Brice Campo, Kouichi Hasegawa, Anupkumar R. Anvikar, Neena Valecha, Varadharajan Sundaramurthy

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Vivax malaria is associated with significant morbidity and economic loss, and constitutes the bulk of malaria cases in large parts of Asia and South America as well as recent case reports in Africa. The widespread prevalence of vivax is a challenge to global malaria elimination programmes. Vivax malaria control is particularly challenged by existence of dormant liver stage forms that are difficult to treat and are responsible for multiple relapses, growing drug resistance to the asexual blood stages and host-genetic factors that preclude use of specific drugs like primaquine capable of targeting Plasmodium vivax liver stages. Despite an obligatory liver-stage in the Plasmodium life cycle, both the difficulty in obtaining P. vivax sporozoites and the limited availability of robust host cell models permissive to P. vivax infection are responsible for the limited knowledge of hypnozoite formation biology and relapse mechanisms, as well as the limited capability to do drug screening. Although India accounts for about half of vivax malaria cases world-wide, very little is known about the vivax liver stage forms in the context of Indian clinical isolates.

Methods

To address this, methods were established to obtain infective P. vivax sporozoites from an endemic region in India and multiple assay platforms set up to detect and characterize vivax liver stage forms. Different hepatoma cell lines, including the widely used HCO4 cells, primary human hepatocytes as well as hepatocytes obtained from iPSC’s generated from vivax patients and healthy donors were tested for infectivity with P. vivax sporozoites.

Results

Both large and small forms of vivax liver stage are detected in these assays, although the infectivity obtained in these platforms are low.

Conclusions

This study provides a proof of concept for detecting liver stage P. vivax and provide the first characterization of P. vivax liver stage forms from an endemic region in India.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ramsay A, Olliaro P, Reeder JC. The need for operational research and capacity-building in support of the Global Technical Strategy for Malaria 2016-2030. Malar J. 2016;15:235.PubMedPubMedCentral Ramsay A, Olliaro P, Reeder JC. The need for operational research and capacity-building in support of the Global Technical Strategy for Malaria 2016-2030. Malar J. 2016;15:235.PubMedPubMedCentral
2.
go back to reference Anvikar AR, Shah N, Dhariwal AC, Sonal GS, Pradhan MM, Ghosh SK, et al. Epidemiology of Plasmodium vivax malaria in India. Am J Trop Med Hyg. 2016;95(6 Suppl):108–20.PubMedPubMedCentral Anvikar AR, Shah N, Dhariwal AC, Sonal GS, Pradhan MM, Ghosh SK, et al. Epidemiology of Plasmodium vivax malaria in India. Am J Trop Med Hyg. 2016;95(6 Suppl):108–20.PubMedPubMedCentral
3.
go back to reference WHO. World malaria report. Geneva, World Health. Organization. 2019;2019:232. WHO. World malaria report. Geneva, World Health. Organization. 2019;2019:232.
4.
go back to reference Ding XC, Ade MP, Baird JK, Cheng Q, Cunningham J, Dhorda M, et al. Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: target product profiles. PLoS Negl Trop Dis. 2017;11:e0005516.PubMedPubMedCentral Ding XC, Ade MP, Baird JK, Cheng Q, Cunningham J, Dhorda M, et al. Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: target product profiles. PLoS Negl Trop Dis. 2017;11:e0005516.PubMedPubMedCentral
5.
go back to reference Singh G, Singh R, Urhehar AD. Simple molecular methods for early detection of chloroquine drug resistance in Plasmodium vivax and Plasmodium falciparum. J Clin Diagn Res. 2016;10:DC19-23.PubMed Singh G, Singh R, Urhehar AD. Simple molecular methods for early detection of chloroquine drug resistance in Plasmodium vivax and Plasmodium falciparum. J Clin Diagn Res. 2016;10:DC19-23.PubMed
6.
go back to reference Saralamba N, Nakeesathit S, Mayxay M, Newton PN, Osorio L, Kim JR, et al. Geographic distribution of amino acid mutations in DHFR and DHPS in Plasmodium vivax isolates from Lao PDR. India and Colombia. Malar J. 2016;15:484.PubMed Saralamba N, Nakeesathit S, Mayxay M, Newton PN, Osorio L, Kim JR, et al. Geographic distribution of amino acid mutations in DHFR and DHPS in Plasmodium vivax isolates from Lao PDR. India and Colombia. Malar J. 2016;15:484.PubMed
7.
go back to reference Dembele L, Franetich JF, Lorthiois A, Gego A, Zeeman AM, Kocken CH, et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med. 2014;20:307–12.PubMed Dembele L, Franetich JF, Lorthiois A, Gego A, Zeeman AM, Kocken CH, et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med. 2014;20:307–12.PubMed
8.
go back to reference Campo B, Vandal O, Wesche DL, Burrows JN. Killing the hypnozoite–drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog Glob Health. 2015;109:107–22.PubMedPubMedCentral Campo B, Vandal O, Wesche DL, Burrows JN. Killing the hypnozoite–drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog Glob Health. 2015;109:107–22.PubMedPubMedCentral
9.
go back to reference Hounkpatin AB, Kreidenweiss A, Held J. Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: a review on the mode of action and emerging trial data. Infect Drug Resist. 2019;12:553–70.PubMedPubMedCentral Hounkpatin AB, Kreidenweiss A, Held J. Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: a review on the mode of action and emerging trial data. Infect Drug Resist. 2019;12:553–70.PubMedPubMedCentral
10.
go back to reference Shanks GD, White NJ. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis. 2013;13:900–6.PubMed Shanks GD, White NJ. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis. 2013;13:900–6.PubMed
11.
go back to reference Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, et al. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg. 1982;31:1291–3.PubMed Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, et al. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg. 1982;31:1291–3.PubMed
12.
go back to reference Roobsoong W, Tharinjaroen CS, Rachaphaew N, Chobson P, Schofield L, Cui L, et al. Improvement of culture conditions for long-term in vitro culture of Plasmodium vivax. Malar J. 2015;14:297.PubMedPubMedCentral Roobsoong W, Tharinjaroen CS, Rachaphaew N, Chobson P, Schofield L, Cui L, et al. Improvement of culture conditions for long-term in vitro culture of Plasmodium vivax. Malar J. 2015;14:297.PubMedPubMedCentral
13.
go back to reference Udomsangpetch R, Kaneko O, Chotivanich K, Sattabongkot J. Cultivation of Plasmodium vivax. Trends Parasitol. 2008;24:85–8.PubMed Udomsangpetch R, Kaneko O, Chotivanich K, Sattabongkot J. Cultivation of Plasmodium vivax. Trends Parasitol. 2008;24:85–8.PubMed
14.
go back to reference Sattabongkot J, Yimamnuaychoke N, Leelaudomlipi S, Rasameesoraj M, Jenwithisuk R, Coleman RE, et al. Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. Am J Trop Med Hyg. 2006;74:708–15.PubMed Sattabongkot J, Yimamnuaychoke N, Leelaudomlipi S, Rasameesoraj M, Jenwithisuk R, Coleman RE, et al. Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. Am J Trop Med Hyg. 2006;74:708–15.PubMed
15.
go back to reference Pewkliang Y, Rungin S, Lerdpanyangam K, Duangmanee A, Kanjanasirirat P, Suthivanich P, et al. A novel immortalized hepatocyte-like cell line (imHC) supports in vitro liver stage development of the human malarial parasite Plasmodium vivax. Malar J. 2018;17:50.PubMedPubMedCentral Pewkliang Y, Rungin S, Lerdpanyangam K, Duangmanee A, Kanjanasirirat P, Suthivanich P, et al. A novel immortalized hepatocyte-like cell line (imHC) supports in vitro liver stage development of the human malarial parasite Plasmodium vivax. Malar J. 2018;17:50.PubMedPubMedCentral
16.
go back to reference Chattopadhyay R, Velmurugan S, Chakiath C, Andrews Donkor L, Milhous W, Barnwell JW, et al. Establishment of an in vitro assay for assessing the effects of drugs on the liver stages of Plasmodium vivax malaria. PLoS ONE. 2010;5:e14275.PubMedPubMedCentral Chattopadhyay R, Velmurugan S, Chakiath C, Andrews Donkor L, Milhous W, Barnwell JW, et al. Establishment of an in vitro assay for assessing the effects of drugs on the liver stages of Plasmodium vivax malaria. PLoS ONE. 2010;5:e14275.PubMedPubMedCentral
17.
go back to reference Orjuela-Sanchez P, Villa ZH, Moreno M, Tong-Rios C, Meister S, LaMonte GM, et al. Developing Plasmodium vivax resources for liver stage study in the Peruvian Amazon Region. ACS Infect Dis. 2018;4:531–40.PubMed Orjuela-Sanchez P, Villa ZH, Moreno M, Tong-Rios C, Meister S, LaMonte GM, et al. Developing Plasmodium vivax resources for liver stage study in the Peruvian Amazon Region. ACS Infect Dis. 2018;4:531–40.PubMed
18.
go back to reference Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun. 2018;9:1837.PubMedPubMedCentral Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun. 2018;9:1837.PubMedPubMedCentral
19.
go back to reference March S, Ramanan V, Trehan K, Ng S, Galstian A, Gural N, et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc. 2015;10:2027–53.PubMedPubMedCentral March S, Ramanan V, Trehan K, Ng S, Galstian A, Gural N, et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc. 2015;10:2027–53.PubMedPubMedCentral
20.
go back to reference Gural N, Mancio-Silva L, Miller AB, Galstian A, Butty VL, Levine SS, et al. In vitro culture, drug sensitivity, and transcriptome of Plasmodium vivax hypnozoites. Cell Host Microbe. 2018;23(395–406):e4. Gural N, Mancio-Silva L, Miller AB, Galstian A, Butty VL, Levine SS, et al. In vitro culture, drug sensitivity, and transcriptome of Plasmodium vivax hypnozoites. Cell Host Microbe. 2018;23(395–406):e4.
21.
go back to reference March S, Ng S, Velmurugan S, Galstian A, Shan J, Logan DJ, et al. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe. 2013;14:104–15.PubMedPubMedCentral March S, Ng S, Velmurugan S, Galstian A, Shan J, Logan DJ, et al. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe. 2013;14:104–15.PubMedPubMedCentral
22.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMed Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMed
23.
go back to reference Schwartz RE, Trehan K, Andrus L, Sheahan TP, Ploss A, Duncan SA, et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:2544–8.PubMed Schwartz RE, Trehan K, Andrus L, Sheahan TP, Ploss A, Duncan SA, et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:2544–8.PubMed
24.
go back to reference Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, Bhatia SN, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA. 2014;111:12193–8.PubMed Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, Bhatia SN, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA. 2014;111:12193–8.PubMed
25.
go back to reference Ng S, Schwartz RE, March S, Galstian A, Gural N, Shan J, et al. Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep. 2015;4:348–59. Ng S, Schwartz RE, March S, Galstian A, Gural N, Shan J, et al. Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep. 2015;4:348–59.
26.
go back to reference Dykes CL, Das MK, Eapen A, Batra CP, Ghosh SK, Vijayan VA, et al. Knockdown resistance (kdr) mutations in Indian Anopheles stephensi (Diptera: Culicidae) populations. J Med Entomol. 2016;53:315–20.PubMedPubMedCentral Dykes CL, Das MK, Eapen A, Batra CP, Ghosh SK, Vijayan VA, et al. Knockdown resistance (kdr) mutations in Indian Anopheles stephensi (Diptera: Culicidae) populations. J Med Entomol. 2016;53:315–20.PubMedPubMedCentral
27.
go back to reference Peters W, Ramkaran AE. The chemotherapy of rodent malaria, XXXII. The influence of p-aminobenzoic acid on the transmission of Plasmodium yoelii and P. berghei by Anopheles stephensi. Ann Trop Med Parasitol. 1980;74:275–82.PubMed Peters W, Ramkaran AE. The chemotherapy of rodent malaria, XXXII. The influence of p-aminobenzoic acid on the transmission of Plasmodium yoelii and P. berghei by Anopheles stephensi. Ann Trop Med Parasitol. 1980;74:275–82.PubMed
28.
go back to reference Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2014;16:2980–94.PubMedPubMedCentral Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2014;16:2980–94.PubMedPubMedCentral
29.
go back to reference Kalappa DM, Subramani PA, Basavanna SK, Ghosh SK, Sundaramurthy V, Uragayala S, et al. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections. Malar J. 2018;17:385.PubMedPubMedCentral Kalappa DM, Subramani PA, Basavanna SK, Ghosh SK, Sundaramurthy V, Uragayala S, et al. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections. Malar J. 2018;17:385.PubMedPubMedCentral
30.
go back to reference Vantaux A, de Sales Hien D, Yaméogo B, Dabiré K, Thomas F, Cohuet A, et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front Ecol Evol. 2015;3:86. Vantaux A, de Sales Hien D, Yaméogo B, Dabiré K, Thomas F, Cohuet A, et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front Ecol Evol. 2015;3:86.
31.
go back to reference Yasuda S-Y, Ikeda T, Shahsavarani H, Yoshida N, Nayer B, Hino M, et al. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells. Nat Biomed Eng. 2018;2:173–82.PubMed Yasuda S-Y, Ikeda T, Shahsavarani H, Yoshida N, Nayer B, Hino M, et al. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells. Nat Biomed Eng. 2018;2:173–82.PubMed
32.
go back to reference Paquet T, Le Manach C, Cabrera DG, Younis Y, Henrich PP, Abraham TS, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017;9:387. Paquet T, Le Manach C, Cabrera DG, Younis Y, Henrich PP, Abraham TS, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017;9:387.
33.
go back to reference Hanson KK, Ressurreicao AS, Buchholz K, Prudencio M, Herman-Ornelas JD, Rebelo M, et al. Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proc Natl Acad Sci USA. 2013;110:E2838–47.PubMed Hanson KK, Ressurreicao AS, Buchholz K, Prudencio M, Herman-Ornelas JD, Rebelo M, et al. Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proc Natl Acad Sci USA. 2013;110:E2838–47.PubMed
34.
go back to reference Ghosh SK, Tiwari S, Raghavendra K, Sathyanarayan TS, Dash AP. Observations on sporozoite detection in naturally infected sibling species of the Anopheles culicifacies complex and variant of Anopheles stephensi in India. J Biosci. 2008;33:333–6.PubMed Ghosh SK, Tiwari S, Raghavendra K, Sathyanarayan TS, Dash AP. Observations on sporozoite detection in naturally infected sibling species of the Anopheles culicifacies complex and variant of Anopheles stephensi in India. J Biosci. 2008;33:333–6.PubMed
35.
go back to reference Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.PubMedPubMedCentral Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.PubMedPubMedCentral
36.
go back to reference Manzoni G, Marinach C, Topcu S, Briquet S, Grand M, Tolle M, et al. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. Elife. 2017;6:e25903.PubMedPubMedCentral Manzoni G, Marinach C, Topcu S, Briquet S, Grand M, Tolle M, et al. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. Elife. 2017;6:e25903.PubMedPubMedCentral
37.
go back to reference Boonhok R, Rachaphaew N, Duangmanee A, Chobson P, Pattaradilokrat S, Utaisincharoen P, et al. LAP-like process as an immune mechanism downstream of IFN-gamma in control of the human malaria Plasmodium vivax liver stage. Proc Natl Acad Sci USA. 2016;113:E3519–28.PubMed Boonhok R, Rachaphaew N, Duangmanee A, Chobson P, Pattaradilokrat S, Utaisincharoen P, et al. LAP-like process as an immune mechanism downstream of IFN-gamma in control of the human malaria Plasmodium vivax liver stage. Proc Natl Acad Sci USA. 2016;113:E3519–28.PubMed
38.
go back to reference Evans RJ, Sundaramurthy V, Frickel EM. The interplay of host autophagy and eukaryotic pathogens. Front Cell Dev Biol. 2018;6:118.PubMedPubMedCentral Evans RJ, Sundaramurthy V, Frickel EM. The interplay of host autophagy and eukaryotic pathogens. Front Cell Dev Biol. 2018;6:118.PubMedPubMedCentral
39.
go back to reference Das A, Anvikar AR, Cator LJ, Dhiman RC, Eapen A, Mishra N, et al. Malaria in India: the center for the study of complex malaria in India. Acta Trop. 2012;121:267–73.PubMed Das A, Anvikar AR, Cator LJ, Dhiman RC, Eapen A, Mishra N, et al. Malaria in India: the center for the study of complex malaria in India. Acta Trop. 2012;121:267–73.PubMed
40.
go back to reference Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimamnuaychok N, et al. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe. 2015;17:526–35.PubMedPubMedCentral Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimamnuaychok N, et al. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe. 2015;17:526–35.PubMedPubMedCentral
41.
go back to reference Moreno M, Tong-Rios C, Orjuela-Sanchez P, Carrasco-Escobar G, Campo B, Gamboa D, et al. Continuous supply of Plasmodium vivax sporozoites from colonized Anopheles darlingi in the Peruvian Amazon. ACS Infect Dis. 2018;4:541–8.PubMedPubMedCentral Moreno M, Tong-Rios C, Orjuela-Sanchez P, Carrasco-Escobar G, Campo B, Gamboa D, et al. Continuous supply of Plasmodium vivax sporozoites from colonized Anopheles darlingi in the Peruvian Amazon. ACS Infect Dis. 2018;4:541–8.PubMedPubMedCentral
42.
go back to reference Mohanty AK, Balabaskaran Nina P, Ballav S, Vernekar S, Parkar S, D’souza M, et al. Susceptibility of wild and colonized Anopheles stephensi to Plasmodium vivax infection. Malar J. 2018;17:225.PubMedPubMedCentral Mohanty AK, Balabaskaran Nina P, Ballav S, Vernekar S, Parkar S, D’souza M, et al. Susceptibility of wild and colonized Anopheles stephensi to Plasmodium vivax infection. Malar J. 2018;17:225.PubMedPubMedCentral
43.
go back to reference Balabaskaran Nina P, Mohanty AK, Ballav S, Vernekar S, Bhinge S, D’Souza M, et al. Dynamics of Plasmodium vivax sporogony in wild Anopheles stephensi in a malaria-endemic region of Western India. Malar J. 2017;16:284.PubMedPubMedCentral Balabaskaran Nina P, Mohanty AK, Ballav S, Vernekar S, Bhinge S, D’Souza M, et al. Dynamics of Plasmodium vivax sporogony in wild Anopheles stephensi in a malaria-endemic region of Western India. Malar J. 2017;16:284.PubMedPubMedCentral
44.
go back to reference Joshi H, Prajapati SK, Verma A, Kang’a S, Carlton JM. Plasmodium vivax in India. Trends Parasitol. 2008;24:228–35.PubMed Joshi H, Prajapati SK, Verma A, Kang’a S, Carlton JM. Plasmodium vivax in India. Trends Parasitol. 2008;24:228–35.PubMed
45.
go back to reference Joshi H, Subbarao SK, Raghavendra K, Sharma VP. Plasmodium vivax: enzyme polymorphism in isolates of Indian origin. Trans R Soc Trop Med Hyg. 1989;83:179–81.PubMed Joshi H, Subbarao SK, Raghavendra K, Sharma VP. Plasmodium vivax: enzyme polymorphism in isolates of Indian origin. Trans R Soc Trop Med Hyg. 1989;83:179–81.PubMed
46.
go back to reference Joshi H, Subbarao SK, Adak T, Nanda N, Ghosh SK, Carter R, et al. Genetic structure of Plasmodium vivax isolates in India. Trans R Soc Trop Med Hyg. 1997;91:231–5.PubMed Joshi H, Subbarao SK, Adak T, Nanda N, Ghosh SK, Carter R, et al. Genetic structure of Plasmodium vivax isolates in India. Trans R Soc Trop Med Hyg. 1997;91:231–5.PubMed
Metadata
Title
Plasmodium vivax liver stage assay platforms using Indian clinical isolates
Authors
Pradeep A. Subramani
Neha Vartak-Sharma
Seetha Sreekumar
Pallavi Mathur
Bhavana Nayer
Sushrut Dakhore
Sowmya K. Basavanna
Devaiah M. Kalappa
Ramya V. Krishnamurthy
Benudhar Mukhi
Priyasha Mishra
Noriko Yoshida
Susanta Kumar Ghosh
Radhakrishan Shandil
Shridhar Narayanan
Brice Campo
Kouichi Hasegawa
Anupkumar R. Anvikar
Neena Valecha
Varadharajan Sundaramurthy
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03284-8

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue