Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

Immunogenicity analysis of conserved fragments in Plasmodium ovale species merozoite surface protein 4

Authors: Juliette Uwase, Ruilin Chu, Kokouvi Kassegne, Yao Lei, Feihu Shen, Haitian Fu, Yifan Sun, Yinghua Xuan, Jun Cao, Yang Cheng

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

There is an urgent need for an effective vaccine to control and eradicate malaria, one of the most serious global infectious diseases. Plasmodium merozoite surface protein 4 (MSP4) has been listed as a blood-stage subunit vaccine candidate for malaria. Infection with Plasmodium ovale species including P. ovale wallikeri and P. ovale curtisi, is also a source of malaria burden in tropical regions where it is sometimes mixed with other Plasmodium species. However, little is known about P. ovale MSP4.

Methods

The msp4 gene was amplified through polymerase chain reaction using genomic DNA extracted from blood samples of 46 patients infected with P. ovale spp. and amplified products were sequenced. Open reading frames predicted as immunogenic peptides consisting of 119 and 97 amino acids of P. ovale curtisi MSP4 (PocMSP4) and P. ovale wallikeri MSP4 (PowMSP4), respectively, were selected for protein expression. Recombinant proteins (rPoMSP4) were expressed in Escherichia coli, purified, analysed, and immunized in BALB/c mice. The specificity of anti-MSP4-immunoglobulin (Ig) G antibodies was evaluated by Western blot and enzyme-linked immunosorbent assays, and cellular immune responses were analysed via lymphocyte proliferation assays.

Results

Full peptide sequences of PocMSP4 and PowMSP4 were completely conserved in all clinical isolates, except in the epidermal growth factor-like domain at the carboxyl terminus where only one mutation was observed in one P. o. wallikeri isolate. Further, truncated PoMSP4 segments were successfully expressed and purified as ~ 32 kDa proteins. Importantly, high antibody responses with end-point titres ranging from 1:10,000 to 1:2,560,000 in all immunized mouse groups were observed, with high IgG avidity to PocMSP4 (80.5%) and PowMSP4 (92.3%). Furthermore, rPocMSP4 and rPowMSP4 cross-reacted with anti-PowMSP4-specific or anti-PocMSP4-specific antibodies. Additionally, anti-PoMSP4 IgG antibodies showed broad immuno-specificity in reacting against rPoMSP1 and rPoAMA1. Lastly, PocMSP4- and PowMSP4-immunized mice induced cellular immune responses with PocMSP4 (36%) and PowMSP4 cells (15.8%) during splenocyte proliferation assays.

Conclusion

Findings from this study suggest conservation in PoMSP4 protein sequences and high immunogenicity was observed in rPoMSP4. Furthermore, induction of immune responses in PocMSP4- and PowMSP4-immunized mice informed that both humoral and cellular immune responses play crucial roles for PoMSP4 in protection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kassegne K, Zhang T, Chen SB, Xu B, Dang ZS, Deng WP, et al. Study roadmap for high-throughput development of easy to use and affordable biomarkers as diagnostics for tropical diseases: a focus on malaria and schistosomiasis. Infect Dis Poverty. 2017;6:130.CrossRefPubMedPubMedCentral Kassegne K, Zhang T, Chen SB, Xu B, Dang ZS, Deng WP, et al. Study roadmap for high-throughput development of easy to use and affordable biomarkers as diagnostics for tropical diseases: a focus on malaria and schistosomiasis. Infect Dis Poverty. 2017;6:130.CrossRefPubMedPubMedCentral
3.
go back to reference Vandoolaeghe P, Schuerman L. [The RTS, S/AS01 malaria vaccine in children aged 5–17 months at first vaccination](in French). Pan Afr Med J. 2018;30:142.CrossRefPubMedPubMedCentral Vandoolaeghe P, Schuerman L. [The RTS, S/AS01 malaria vaccine in children aged 5–17 months at first vaccination](in French). Pan Afr Med J. 2018;30:142.CrossRefPubMedPubMedCentral
4.
go back to reference Dobano C, Ubillos I, Jairoce C, Gyan B, Vidal M, Jimenez A, et al. RTS, S/AS01E immunization increases antibody responses to vaccine-unrelated Plasmodium falciparum antigens associated with protection against clinical malaria in African children: a case-control study. BMC Med. 2019;17:157.CrossRefPubMedPubMedCentral Dobano C, Ubillos I, Jairoce C, Gyan B, Vidal M, Jimenez A, et al. RTS, S/AS01E immunization increases antibody responses to vaccine-unrelated Plasmodium falciparum antigens associated with protection against clinical malaria in African children: a case-control study. BMC Med. 2019;17:157.CrossRefPubMedPubMedCentral
5.
go back to reference Rts SCTP, Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365:1863–75.CrossRef Rts SCTP, Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365:1863–75.CrossRef
6.
go back to reference Kassegne K, Abe EM, Cui YB, Chen SB, Xu B, Deng WP, et al. Contribution of Plasmodium immunomics: potential impact for serological testing and surveillance of malaria. Expert Rev Proteomics. 2019;16:117–29.CrossRefPubMed Kassegne K, Abe EM, Cui YB, Chen SB, Xu B, Deng WP, et al. Contribution of Plasmodium immunomics: potential impact for serological testing and surveillance of malaria. Expert Rev Proteomics. 2019;16:117–29.CrossRefPubMed
8.
go back to reference Doderer-Lang C, Atchade PS, Meckert L, Haar E, Perrotey S, Filisetti D, et al. The ears of the African elephant: unexpected high seroprevalence of Plasmodium ovale and Plasmodium malariae in healthy populations in Western Africa. Malar J. 2014;13:240.CrossRefPubMedPubMedCentral Doderer-Lang C, Atchade PS, Meckert L, Haar E, Perrotey S, Filisetti D, et al. The ears of the African elephant: unexpected high seroprevalence of Plasmodium ovale and Plasmodium malariae in healthy populations in Western Africa. Malar J. 2014;13:240.CrossRefPubMedPubMedCentral
9.
go back to reference Rutledge GG, Bohme U, Sanders M, Rrid AJ, Cotton JA, Maiga-Ascofare O, et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature. 2017;542:101–4.CrossRefPubMedPubMedCentral Rutledge GG, Bohme U, Sanders M, Rrid AJ, Cotton JA, Maiga-Ascofare O, et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature. 2017;542:101–4.CrossRefPubMedPubMedCentral
10.
go back to reference Sutherland CJ. Persistent parasitism: the adaptive biology of malariae and ovale malaria. Trends Parasitol. 2016;32:808–19.CrossRefPubMed Sutherland CJ. Persistent parasitism: the adaptive biology of malariae and ovale malaria. Trends Parasitol. 2016;32:808–19.CrossRefPubMed
11.
go back to reference Oguike MC, Betson M, Burke M, Nolder D, Stothard JR, Kleinschmidt I, et al. Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities. Int J Parasitol. 2011;41:677–83.CrossRefPubMedPubMedCentral Oguike MC, Betson M, Burke M, Nolder D, Stothard JR, Kleinschmidt I, et al. Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities. Int J Parasitol. 2011;41:677–83.CrossRefPubMedPubMedCentral
12.
go back to reference Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C, Pukrittayakamee S, et al. Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis. 2010;201:1544–50.CrossRefPubMed Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C, Pukrittayakamee S, et al. Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis. 2010;201:1544–50.CrossRefPubMed
13.
go back to reference Ellis RD, Sagara I, Doumbo O, Wu YM. Blood stage vaccines for Plasmodium falciparum:current status and the way forward. Hum Vaccines. 2010;6:627–34.CrossRef Ellis RD, Sagara I, Doumbo O, Wu YM. Blood stage vaccines for Plasmodium falciparum:current status and the way forward. Hum Vaccines. 2010;6:627–34.CrossRef
14.
go back to reference Barua P, Beeson JG, Maleta K, Ashorn P, Rogerson SJ. The impact of early life exposure to Plasmodium falciparum on the development of naturally acquired immunity to malaria in young Malawian children. Malar J. 2019;18:11.CrossRefPubMedPubMedCentral Barua P, Beeson JG, Maleta K, Ashorn P, Rogerson SJ. The impact of early life exposure to Plasmodium falciparum on the development of naturally acquired immunity to malaria in young Malawian children. Malar J. 2019;18:11.CrossRefPubMedPubMedCentral
15.
go back to reference Kassegne K, Abe EM, Chen JH, Zhou XN. Immunomic approaches for antigen discovery of human parasites. Expert Rev Proteomics. 2016;13:1091–101.CrossRefPubMed Kassegne K, Abe EM, Chen JH, Zhou XN. Immunomic approaches for antigen discovery of human parasites. Expert Rev Proteomics. 2016;13:1091–101.CrossRefPubMed
16.
go back to reference Benet A, Tavul L, Reeder JC, Cortes A. Diversity of Plasmodium falciparum vaccine candidate merozoite surface protein 4 (MSP4) in a natural population. Mol Biochem Parasitol. 2004;134:275–80.CrossRefPubMed Benet A, Tavul L, Reeder JC, Cortes A. Diversity of Plasmodium falciparum vaccine candidate merozoite surface protein 4 (MSP4) in a natural population. Mol Biochem Parasitol. 2004;134:275–80.CrossRefPubMed
17.
go back to reference Illingworth JJ, Alanine DG, Brown R, Marshall JM, Bartlett HE, Silk SE, et al. Functional comparison of blood-stage Plasmodium falciparum malaria vaccine candidate antigens. Front Immunol. 2019;10:1254.CrossRefPubMedPubMedCentral Illingworth JJ, Alanine DG, Brown R, Marshall JM, Bartlett HE, Silk SE, et al. Functional comparison of blood-stage Plasmodium falciparum malaria vaccine candidate antigens. Front Immunol. 2019;10:1254.CrossRefPubMedPubMedCentral
18.
go back to reference Biswas S, Spencer AJ, Forbes EK, Gilbert SC, Holder AA, Hill AVS, et al. Recombinant viral-vectored vaccines expressing Plasmodium chabaudi AS apical membrane antigen 1: mechanisms of vaccine-induced blood-stage protection. J Immunol. 2012;188:5041–53.CrossRefPubMed Biswas S, Spencer AJ, Forbes EK, Gilbert SC, Holder AA, Hill AVS, et al. Recombinant viral-vectored vaccines expressing Plasmodium chabaudi AS apical membrane antigen 1: mechanisms of vaccine-induced blood-stage protection. J Immunol. 2012;188:5041–53.CrossRefPubMed
19.
go back to reference Elias SC, Choudhary P, de Cassan SC, Biswas S, Collins KA, Halstead FD, et al. Analysis of human B-cell responses following ChAd63-MVA MSP1 and AMA1 immunization and controlled malaria infection. Immunology. 2014;141:628–44.CrossRefPubMedPubMedCentral Elias SC, Choudhary P, de Cassan SC, Biswas S, Collins KA, Halstead FD, et al. Analysis of human B-cell responses following ChAd63-MVA MSP1 and AMA1 immunization and controlled malaria infection. Immunology. 2014;141:628–44.CrossRefPubMedPubMedCentral
20.
go back to reference Dutta S, Sullivan JS, Grady KK, Haynes JD, Komisar J, Batchelor AH, et al. High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus Model. PLoS ONE. 2009;4:e8138.CrossRefPubMedPubMedCentral Dutta S, Sullivan JS, Grady KK, Haynes JD, Komisar J, Batchelor AH, et al. High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus Model. PLoS ONE. 2009;4:e8138.CrossRefPubMedPubMedCentral
21.
go back to reference Igonet S, Vulliez-Le Normand B, Faure G, Riottot MM, Kocken CHM, Thomas AW, et al. Cross-reactivity studies of an anti-Plasmodium vivax apical membrane antigen 1 monoclonal antibody: binding and structural characterisation. J Mol Biol. 2007;366:1523–37.CrossRefPubMed Igonet S, Vulliez-Le Normand B, Faure G, Riottot MM, Kocken CHM, Thomas AW, et al. Cross-reactivity studies of an anti-Plasmodium vivax apical membrane antigen 1 monoclonal antibody: binding and structural characterisation. J Mol Biol. 2007;366:1523–37.CrossRefPubMed
22.
go back to reference Woodberry T, Minigo G, Piera KA, Hanley JC, de Silva HD, Salwati E, et al. Antibodies to Plasmodium falciparum and Plasmodium vivax merozoite surface protein 5 in Indonesia: species-specific and cross-reactive responses. J Infect Dis. 2008;198:134–42.CrossRefPubMed Woodberry T, Minigo G, Piera KA, Hanley JC, de Silva HD, Salwati E, et al. Antibodies to Plasmodium falciparum and Plasmodium vivax merozoite surface protein 5 in Indonesia: species-specific and cross-reactive responses. J Infect Dis. 2008;198:134–42.CrossRefPubMed
23.
go back to reference Marshall VM, Silva A, Foley M, Cranmer S, Wang L, McColl DJ, et al. A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain. Infect Immun. 1997;65:4460–7.CrossRefPubMedPubMedCentral Marshall VM, Silva A, Foley M, Cranmer S, Wang L, McColl DJ, et al. A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain. Infect Immun. 1997;65:4460–7.CrossRefPubMedPubMedCentral
24.
go back to reference Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics. 2006;5:1286–99.CrossRefPubMed Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics. 2006;5:1286–99.CrossRefPubMed
25.
go back to reference Wang L, Black CG, Marshall VM, Coppel RL. Structural and antigenic properties of merozoite surface protein 4 of Plasmodium falciparum. Infect Immun. 1999;67:2193–200.CrossRefPubMedPubMedCentral Wang L, Black CG, Marshall VM, Coppel RL. Structural and antigenic properties of merozoite surface protein 4 of Plasmodium falciparum. Infect Immun. 1999;67:2193–200.CrossRefPubMedPubMedCentral
26.
go back to reference Sanders PR, Kats LM, Drew DR, O’Donnell RA, O’Neill M, Maier AG, et al. A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion. Infect Immun. 2006;74:4330–8.CrossRefPubMedPubMedCentral Sanders PR, Kats LM, Drew DR, O’Donnell RA, O’Neill M, Maier AG, et al. A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion. Infect Immun. 2006;74:4330–8.CrossRefPubMedPubMedCentral
27.
go back to reference Goschnick MW, Black CG, Kedzierski L, Holder AA, Coppel RL. Merozoite surface protein 4/5 provides protection against lethal challenge with a heterologous malaria parasite strain. Infect Immun. 2004;72:5840–9.CrossRefPubMedPubMedCentral Goschnick MW, Black CG, Kedzierski L, Holder AA, Coppel RL. Merozoite surface protein 4/5 provides protection against lethal challenge with a heterologous malaria parasite strain. Infect Immun. 2004;72:5840–9.CrossRefPubMedPubMedCentral
28.
go back to reference Kedzierski L, Black CG, Coppel RL. Immunization with recombinant Plasmodium yoelii merozoite surface protein 4/5 protects mice against lethal challenge. Infect Immun. 2000;68:6034–7.CrossRefPubMedPubMedCentral Kedzierski L, Black CG, Coppel RL. Immunization with recombinant Plasmodium yoelii merozoite surface protein 4/5 protects mice against lethal challenge. Infect Immun. 2000;68:6034–7.CrossRefPubMedPubMedCentral
29.
go back to reference Kedzierski L, Black CG, Goschnick MW, Stowers AW, Coppel RL. Immunization with a combination of merozoite surface proteins 4/5 and 1 enhances protection against lethal challenge with Plasmodium yoelii. Infect Immun. 2002;70:6606–13.CrossRefPubMedPubMedCentral Kedzierski L, Black CG, Goschnick MW, Stowers AW, Coppel RL. Immunization with a combination of merozoite surface proteins 4/5 and 1 enhances protection against lethal challenge with Plasmodium yoelii. Infect Immun. 2002;70:6606–13.CrossRefPubMedPubMedCentral
30.
go back to reference Chittibabu G, Ma C, Netter HJ, Noronha SB, Coppel RL. Production, characterization, and immunogenicity of a secreted form of Plasmodium falciparum merozoite surface protein 4 produced in Bacillus subtilis. Appl Microbiol Biotechnol. 2014;98:3669–78.CrossRefPubMed Chittibabu G, Ma C, Netter HJ, Noronha SB, Coppel RL. Production, characterization, and immunogenicity of a secreted form of Plasmodium falciparum merozoite surface protein 4 produced in Bacillus subtilis. Appl Microbiol Biotechnol. 2014;98:3669–78.CrossRefPubMed
31.
go back to reference Wang L, Richie TL, Stowers A, Nhan DH, Coppel RL. Naturally acquired antibody responses to Plasmodium falciparum merozoite surface protein 4 in a population living in an area of endemicity in Vietnam. Infect Immun. 2001;69:4390–7.CrossRefPubMedPubMedCentral Wang L, Richie TL, Stowers A, Nhan DH, Coppel RL. Naturally acquired antibody responses to Plasmodium falciparum merozoite surface protein 4 in a population living in an area of endemicity in Vietnam. Infect Immun. 2001;69:4390–7.CrossRefPubMedPubMedCentral
32.
go back to reference Perraut R, Varela ML, Joos C, Diouf B, Sokhna C, Mbengue B, et al. Association of antibodies to Plasmodium falciparum merozoite surface protein-4 with protection against clinical malaria. Vaccine. 2017;35:6720–6.CrossRefPubMed Perraut R, Varela ML, Joos C, Diouf B, Sokhna C, Mbengue B, et al. Association of antibodies to Plasmodium falciparum merozoite surface protein-4 with protection against clinical malaria. Vaccine. 2017;35:6720–6.CrossRefPubMed
33.
go back to reference Wang L, Marshall VM, Coppel RL. Limited polymorphism of the vaccine candidate merozoite surface protein 4 of Plasmodium falciparum. Mol Biochem Parasitol. 2002;120:301–3.CrossRefPubMed Wang L, Marshall VM, Coppel RL. Limited polymorphism of the vaccine candidate merozoite surface protein 4 of Plasmodium falciparum. Mol Biochem Parasitol. 2002;120:301–3.CrossRefPubMed
34.
go back to reference Polson HE, Conway DJ, Fandeur T, Mercereau-Puijalon O, Longacre S. Gene polymorphism of Plasmodium falciparum merozoite surface proteins 4 and 5. Mol Biochem Parasitol. 2005;142:110–5.CrossRefPubMed Polson HE, Conway DJ, Fandeur T, Mercereau-Puijalon O, Longacre S. Gene polymorphism of Plasmodium falciparum merozoite surface proteins 4 and 5. Mol Biochem Parasitol. 2005;142:110–5.CrossRefPubMed
35.
go back to reference Chu R, Zhang X, Xu S, Chen L, Tang J, Li Y, et al. Limited genetic diversity of N-terminal of merozoite surface protein-1 (MSP-1) in Plasmodium ovale curtisi and P. ovale wallikeri imported from Africa to China. Parasit Vectors. 2018;11:596. Chu R, Zhang X, Xu S, Chen L, Tang J, Li Y, et al. Limited genetic diversity of N-terminal of merozoite surface protein-1 (MSP-1) in Plasmodium ovale curtisi and P. ovale wallikeri imported from Africa to China. Parasit Vectors. 2018;11:596.
36.
go back to reference Cao Y, Wang W, Liu Y, Cotter C, Zhou H, Zhu G, et al. The increasing importance of Plasmodium ovale and Plasmodium malariae in a malaria elimination setting: an observational study of imported cases in Jiangsu Province, China, 2011-2014. Malar J. 2016;15:459.CrossRefPubMedPubMedCentral Cao Y, Wang W, Liu Y, Cotter C, Zhou H, Zhu G, et al. The increasing importance of Plasmodium ovale and Plasmodium malariae in a malaria elimination setting: an observational study of imported cases in Jiangsu Province, China, 2011-2014. Malar J. 2016;15:459.CrossRefPubMedPubMedCentral
37.
go back to reference de Silva HD, Saleh S, Kovacevic S, Wang L, Black CG, Plebanski M, et al. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes. Malar J. 2011;10:266.CrossRefPubMedPubMedCentral de Silva HD, Saleh S, Kovacevic S, Wang L, Black CG, Plebanski M, et al. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes. Malar J. 2011;10:266.CrossRefPubMedPubMedCentral
38.
40.
go back to reference Daly TM, Long CA. Humoral response to a carboxyl-terminal region of the merozoite surface protein-1 plays a predominant role in controlling blood-stage infection in rodent malaria. J Immunol. 1995;155:236–43.PubMed Daly TM, Long CA. Humoral response to a carboxyl-terminal region of the merozoite surface protein-1 plays a predominant role in controlling blood-stage infection in rodent malaria. J Immunol. 1995;155:236–43.PubMed
41.
go back to reference Ssewanyana I, Arinaitwe E, Nankabirwa JI, Yeka A, Sullivan R, Kamya MR, et al. Avidity of anti-malarial antibodies inversely related to transmission intensity at three sites in Uganda. Malar J. 2017;16:67.CrossRefPubMedPubMedCentral Ssewanyana I, Arinaitwe E, Nankabirwa JI, Yeka A, Sullivan R, Kamya MR, et al. Avidity of anti-malarial antibodies inversely related to transmission intensity at three sites in Uganda. Malar J. 2017;16:67.CrossRefPubMedPubMedCentral
42.
go back to reference Wang YN, Lin M, Liang XY, Chen JT, Xie DD, Wang YL, et al. Natural selection and genetic diversity of domain I of Plasmodium falciparum apical membrane antigen-1 on Bioko Island. Malar J. 2019;18:317.CrossRefPubMedPubMedCentral Wang YN, Lin M, Liang XY, Chen JT, Xie DD, Wang YL, et al. Natural selection and genetic diversity of domain I of Plasmodium falciparum apical membrane antigen-1 on Bioko Island. Malar J. 2019;18:317.CrossRefPubMedPubMedCentral
43.
go back to reference Jahangiri F, Jalallou N, Ebrahimi M. Analysis of Apical Membrane Antigen (AMA)-1 characteristics using bioinformatics tools in order to vaccine design against Plasmodium vivax. Infect Genet Evol. 2019;71:224–31.CrossRefPubMed Jahangiri F, Jalallou N, Ebrahimi M. Analysis of Apical Membrane Antigen (AMA)-1 characteristics using bioinformatics tools in order to vaccine design against Plasmodium vivax. Infect Genet Evol. 2019;71:224–31.CrossRefPubMed
44.
go back to reference Hines SE, Pacheco K, Maier LA. The role of lymphocyte proliferation tests in assessing occupational sensitization and disease. Curr Opin Allergy Clin Immunol. 2012;12:102–10.CrossRefPubMedPubMedCentral Hines SE, Pacheco K, Maier LA. The role of lymphocyte proliferation tests in assessing occupational sensitization and disease. Curr Opin Allergy Clin Immunol. 2012;12:102–10.CrossRefPubMedPubMedCentral
45.
go back to reference Nikbakht M, Pakbin B, Brujeni GN. Evaluation of a new lymphocyte proliferation assay based on cyclic voltammetry; an alternative method. Sci Rep. 2019;9:4503.CrossRefPubMedPubMedCentral Nikbakht M, Pakbin B, Brujeni GN. Evaluation of a new lymphocyte proliferation assay based on cyclic voltammetry; an alternative method. Sci Rep. 2019;9:4503.CrossRefPubMedPubMedCentral
Metadata
Title
Immunogenicity analysis of conserved fragments in Plasmodium ovale species merozoite surface protein 4
Authors
Juliette Uwase
Ruilin Chu
Kokouvi Kassegne
Yao Lei
Feihu Shen
Haitian Fu
Yifan Sun
Yinghua Xuan
Jun Cao
Yang Cheng
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03207-7

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue