Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Chloroquin | Research

In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes

Authors: Shweta Sinha, Daniela I. Batovska, Bikash Medhi, B. D. Radotra, Ashish Bhalla, Nadezhda Markova, Rakesh Sehgal

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Malaria extensively leads to mortality and morbidity in endemic regions, and the emergence of drug resistant parasites is alarming. Plant derived synthetic pharmaceutical compounds are found to be a foremost research to obtain diverse range of potent leads. Amongst them, the chalcone scaffold is a functional template for drug discovery. The present study involves synthesis of ten chalcones with various substitution pattern in rings A and B and assessment of their anti-malarial efficacy against chloroquine sensitive and chloroquine resistant strains as well as of their cytotoxicity and effect on haemozoin production.

Methods

The chalcones were synthesized by Claisen-Schmidt condensation between equimolar quantities of substituted acetophenones and aryl benzaldehydes (or indole-3-carboxaldehyde) and were screened for anti-malarial activity by WHO Mark III schizont maturation inhibition assay. The cytotoxicity profile of a HeLa cell line was evaluated through MTT viability assay and the selectivity index (SI) was calculated. Haemozoin inhibition assay was performed to illustrate mode of action on a Plasmodium falciparum strain.

Results

The IC50 values of all compounds were in the range 0.10–0.40 μg/mL for MRC-2 (a chloroquine sensitive strain) and 0.14–0.55 μg/mL for RKL-9 (a chloroquine resistant strain) of P. falciparum. All the chalcones showed low cellular toxicity with minimal haemolysis. The statistically significant reduction (p < 0.05) in the haemozoin production suggests a similar mechanism than that of chloroquine.

Conclusions

Out of ten chalcones, number 7 was found to be a lead compound with the highest potency (IC50 = 0.11 µg/mL), as compared to licochalcone (IC50 = 1.43 µg/mL) and with high selectivity index of 85.05.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2018. WHO. World malaria report. Geneva: World Health Organization; 2018.
2.
go back to reference Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedPubMedCentralCrossRef Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedPubMedCentralCrossRef
3.
go back to reference Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.PubMedPubMedCentralCrossRef Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.PubMedPubMedCentralCrossRef
4.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2012;371:411–23.CrossRef Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2012;371:411–23.CrossRef
5.
go back to reference Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.PubMedPubMedCentralCrossRef Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.PubMedPubMedCentralCrossRef
6.
go back to reference Kyaw MP, Nyunt MH, Chit K, Aye MM, Aye KH, Aye MM, et al. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS ONE. 2013;8:e57689.PubMedPubMedCentralCrossRef Kyaw MP, Nyunt MH, Chit K, Aye MM, Aye KH, Aye MM, et al. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS ONE. 2013;8:e57689.PubMedPubMedCentralCrossRef
7.
go back to reference Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong Subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.PubMedPubMedCentralCrossRef Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong Subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–7.PubMedPubMedCentralCrossRef
8.
go back to reference Nowakowska Z. A review of anti-infective and antiinflammatory chalcones. Eur J Med Chem. 2007;42:125–37.PubMedCrossRef Nowakowska Z. A review of anti-infective and antiinflammatory chalcones. Eur J Med Chem. 2007;42:125–37.PubMedCrossRef
9.
go back to reference Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol. 2010;5:1–29.PubMedCrossRef Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol. 2010;5:1–29.PubMedCrossRef
10.
go back to reference de Mello TF, Bitencourt HR, Pedroso RB, Aristides SM, Lonardoni MV, Silveira TG. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp Parasitol. 2014;136:27–34.PubMedCrossRef de Mello TF, Bitencourt HR, Pedroso RB, Aristides SM, Lonardoni MV, Silveira TG. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp Parasitol. 2014;136:27–34.PubMedCrossRef
11.
go back to reference Mishra N, Arora P, Kumar B, Mishra LC, Bhattacharya A, Awasthi SK, et al. Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro. Eur J Med Chem. 2008;43:1530–5.PubMedCrossRef Mishra N, Arora P, Kumar B, Mishra LC, Bhattacharya A, Awasthi SK, et al. Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro. Eur J Med Chem. 2008;43:1530–5.PubMedCrossRef
12.
go back to reference Sinha S, Medhi B, Sehgal R. Chalcones as an emerging lead molecule for antimalarial therapy: a review. J Mod Med Chem. 2013;1:64–77. Sinha S, Medhi B, Sehgal R. Chalcones as an emerging lead molecule for antimalarial therapy: a review. J Mod Med Chem. 2013;1:64–77.
13.
go back to reference Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL. Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron. 1998;54:4085–96.CrossRef Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL. Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron. 1998;54:4085–96.CrossRef
14.
go back to reference Kumar R, Mohanakrishnan D, Sharma A, Kaushik NK, Kalia K, Sinha AK, et al. Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur J Med Chem. 2010;45:5292–301.PubMedCrossRef Kumar R, Mohanakrishnan D, Sharma A, Kaushik NK, Kalia K, Sinha AK, et al. Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur J Med Chem. 2010;45:5292–301.PubMedCrossRef
15.
go back to reference Go ML, Liu M, Wilairat P, Rosenthal PJ, Saliba KJ, Kirk K. Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother. 2004;48:3241–5.PubMedPubMedCentralCrossRef Go ML, Liu M, Wilairat P, Rosenthal PJ, Saliba KJ, Kirk K. Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother. 2004;48:3241–5.PubMedPubMedCentralCrossRef
16.
go back to reference Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994;38:1470–5.PubMedPubMedCentralCrossRef Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994;38:1470–5.PubMedPubMedCentralCrossRef
17.
go back to reference Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalones: structure-activity relationship analysis. J Med Chem. 2001;44:4443–52.PubMedCrossRef Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalones: structure-activity relationship analysis. J Med Chem. 2001;44:4443–52.PubMedCrossRef
18.
go back to reference Narender T, Shweta, Tanvir K, Rao MS, Srivastava K, Puri SK. Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg Med Chem Lett. 2005;15:2453–5.PubMedCrossRef Narender T, Shweta, Tanvir K, Rao MS, Srivastava K, Puri SK. Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg Med Chem Lett. 2005;15:2453–5.PubMedCrossRef
19.
go back to reference Geyer JA, Prigge ST, Waters NC. Targeting malaria with specific CDK inhibitors. Biochim Biophys Acta. 2005;1754:160–70.PubMedCrossRef Geyer JA, Prigge ST, Waters NC. Targeting malaria with specific CDK inhibitors. Biochim Biophys Acta. 2005;1754:160–70.PubMedCrossRef
20.
go back to reference Mi-Ichi F, Miyadera H, Kobayashi T, Takamiya S, Waki S, Iwata S, et al. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann N Y Acad Sci. 2005;1056:46–54.PubMedCrossRef Mi-Ichi F, Miyadera H, Kobayashi T, Takamiya S, Waki S, Iwata S, et al. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann N Y Acad Sci. 2005;1056:46–54.PubMedCrossRef
21.
go back to reference Sriwilaijaroen N, Liu M, Go ML, Wilairat P. Plasmepsin II inhibitory activity of alkoxylated and hydroxylated chalcones. Southeast Asian J Trop Med Public Health. 2006;37:607–12.PubMed Sriwilaijaroen N, Liu M, Go ML, Wilairat P. Plasmepsin II inhibitory activity of alkoxylated and hydroxylated chalcones. Southeast Asian J Trop Med Public Health. 2006;37:607–12.PubMed
22.
go back to reference Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, et al. Selectiveinhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1, 3-diaryl-2-propenones. Bioorg Med Chem Lett. 2009;19:1982–5.PubMedCrossRef Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, et al. Selectiveinhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1, 3-diaryl-2-propenones. Bioorg Med Chem Lett. 2009;19:1982–5.PubMedCrossRef
23.
go back to reference Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, et al. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem. 1995;38:5031–7.PubMedCrossRef Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, et al. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem. 1995;38:5031–7.PubMedCrossRef
24.
go back to reference Ivanova A, Batovska D, Engi H, Parushev S, Ocsovszki I, Kostova I, Molnar J. MDR-reversal activity of chalcones. In Vivo. 2008;22:379–84.PubMed Ivanova A, Batovska D, Engi H, Parushev S, Ocsovszki I, Kostova I, Molnar J. MDR-reversal activity of chalcones. In Vivo. 2008;22:379–84.PubMed
25.
go back to reference Mehandzhiyski A, Tsvetkova I, Najdenski H, Batovska D. Synthesis of chalcones and their heterocyclic analogues with potential antibacterial activity. Bulg J Chem. 2012;1:53–9. Mehandzhiyski A, Tsvetkova I, Najdenski H, Batovska D. Synthesis of chalcones and their heterocyclic analogues with potential antibacterial activity. Bulg J Chem. 2012;1:53–9.
26.
27.
go back to reference Lambros E, Vanderberg JP. Synchronization of P. falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMedCrossRef Lambros E, Vanderberg JP. Synchronization of P. falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMedCrossRef
29.
go back to reference WHO. In vitro micro-test (Mark III) for the assessment of P. falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. Geneva: World Health Organization; CTD/MAL/9720 Rev 2; 2001. WHO. In vitro micro-test (Mark III) for the assessment of P. falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. Geneva: World Health Organization; CTD/MAL/9720 Rev 2; 2001.
30.
go back to reference Mishra K, Dash AP, Swain BK, Dey N. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J. 2009;8:26.PubMedPubMedCentralCrossRef Mishra K, Dash AP, Swain BK, Dey N. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J. 2009;8:26.PubMedPubMedCentralCrossRef
31.
go back to reference Smit FJ, van Biljon RA, Birkholtz LM, N’Da DD. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur J Med Chem. 2015;90:33–44.PubMedCrossRef Smit FJ, van Biljon RA, Birkholtz LM, N’Da DD. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur J Med Chem. 2015;90:33–44.PubMedCrossRef
32.
go back to reference Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRef Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRef
33.
go back to reference Kaushik NK, Sharma J, Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J. 2012;11:256.PubMedPubMedCentralCrossRef Kaushik NK, Sharma J, Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J. 2012;11:256.PubMedPubMedCentralCrossRef
34.
go back to reference Sharma P, Sharma JD. In vitro hemolysis of human erythrocytes—by plant extracts with antiplasmodial activity. J Ethnopharmacol. 2001;74:239–43.PubMedCrossRef Sharma P, Sharma JD. In vitro hemolysis of human erythrocytes—by plant extracts with antiplasmodial activity. J Ethnopharmacol. 2001;74:239–43.PubMedCrossRef
35.
go back to reference Akompong T, Ghori N, Haldar K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother. 2000;44:88–96.PubMedPubMedCentralCrossRef Akompong T, Ghori N, Haldar K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother. 2000;44:88–96.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK. Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem. 2009;44:3388–93.PubMedCrossRef Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK. Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem. 2009;44:3388–93.PubMedCrossRef
40.
go back to reference Sinha S, Sarma P, Sehgal R, Medhi B. Development in assay methods for in vitro antimalarial drug efficacy testing: a systematic review. Front Pharmacol. 2017;8:754.PubMedPubMedCentralCrossRef Sinha S, Sarma P, Sehgal R, Medhi B. Development in assay methods for in vitro antimalarial drug efficacy testing: a systematic review. Front Pharmacol. 2017;8:754.PubMedPubMedCentralCrossRef
41.
go back to reference Yenesew A, Induli M, Derese S, Midiwo JO, Heydenreich M, Peter MG, et al. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry. 2004;65:3029–32.PubMedCrossRef Yenesew A, Induli M, Derese S, Midiwo JO, Heydenreich M, Peter MG, et al. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry. 2004;65:3029–32.PubMedCrossRef
42.
go back to reference Chen M, Christensen S, Zhai L, Rasmussen MH, Theander TG, Frøkjaer S, et al. The novel oxygenated chalcone, 2,4-dimethoxy-4′-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis. 1997;176:1327–33.PubMedCrossRef Chen M, Christensen S, Zhai L, Rasmussen MH, Theander TG, Frøkjaer S, et al. The novel oxygenated chalcone, 2,4-dimethoxy-4′-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis. 1997;176:1327–33.PubMedCrossRef
43.
go back to reference Domínguez JN, Charris JE, Lobo G, de Domínguez NG, Moreno MM, Riggione F, et al. Synthesis of quinolinylchalcones and evaluation of their antimalarial activity. Eur J Med Chem. 2001;36:555–60.PubMedCrossRef Domínguez JN, Charris JE, Lobo G, de Domínguez NG, Moreno MM, Riggione F, et al. Synthesis of quinolinylchalcones and evaluation of their antimalarial activity. Eur J Med Chem. 2001;36:555–60.PubMedCrossRef
44.
go back to reference Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC, et al. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res. 2009;18:407–20.CrossRef Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC, et al. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res. 2009;18:407–20.CrossRef
45.
go back to reference Acharya BN, Saraswat D, Tiwari M, Shrivastava AK, Ghorpade R, Bapna S, et al. Synthesis and antimalarial evaluation of 1,3,5-trisubstituted pyrazolines. Eur J Med Chem. 2010;45:430–8.PubMedCrossRef Acharya BN, Saraswat D, Tiwari M, Shrivastava AK, Ghorpade R, Bapna S, et al. Synthesis and antimalarial evaluation of 1,3,5-trisubstituted pyrazolines. Eur J Med Chem. 2010;45:430–8.PubMedCrossRef
46.
go back to reference Domínguez JN, de Domínguez NG, Rodrigues J, Acosta ME, Caraballo N, León C. Synthesis and antimalarial activity of urenylBis-chalcone in vitro and in vivo. J Enzyme Inhib Med Chem. 2012;28:1267–73.PubMedCrossRef Domínguez JN, de Domínguez NG, Rodrigues J, Acosta ME, Caraballo N, León C. Synthesis and antimalarial activity of urenylBis-chalcone in vitro and in vivo. J Enzyme Inhib Med Chem. 2012;28:1267–73.PubMedCrossRef
47.
go back to reference Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, et al. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des. 2012;80:340–7.PubMedCrossRef Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, et al. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des. 2012;80:340–7.PubMedCrossRef
48.
go back to reference Tadigoppula N, Korthikunta V, Gupta S, Kancharla P, Khaliq T, Soni A, et al. Synthesis and insight into the structure activity relationships of chalcones as antimalarial agents. J Med Chem. 2013;56:31–45.PubMedCrossRef Tadigoppula N, Korthikunta V, Gupta S, Kancharla P, Khaliq T, Soni A, et al. Synthesis and insight into the structure activity relationships of chalcones as antimalarial agents. J Med Chem. 2013;56:31–45.PubMedCrossRef
49.
go back to reference Lim SS, Kim HS, Lee DU. In vitro antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc. 2007;28:2495–7.CrossRef Lim SS, Kim HS, Lee DU. In vitro antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc. 2007;28:2495–7.CrossRef
51.
go back to reference de Domínguez NDG, Rosenthal PJ. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood. 1996;87:4448–54.CrossRef de Domínguez NDG, Rosenthal PJ. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood. 1996;87:4448–54.CrossRef
52.
go back to reference Domínguez JN, León C, Rodrigues J, de Domínguez NG, Gut J, Rosenthal PJ. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco. 2005;60:307–11.PubMedCrossRef Domínguez JN, León C, Rodrigues J, de Domínguez NG, Gut J, Rosenthal PJ. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco. 2005;60:307–11.PubMedCrossRef
53.
go back to reference Frölich S, Schubert C, Bienzle U, Jenett-Siems K. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J Antimicrob Chemother. 2005;55:883–7.PubMedCrossRef Frölich S, Schubert C, Bienzle U, Jenett-Siems K. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J Antimicrob Chemother. 2005;55:883–7.PubMedCrossRef
54.
go back to reference Pandey AV, Singh N, Tekwani BL, Puri SK, Chauhan VS. Assay of β-hematin formation by malaria parasite. J Pharm Biomed Anal. 1999;20:203–7.PubMedCrossRef Pandey AV, Singh N, Tekwani BL, Puri SK, Chauhan VS. Assay of β-hematin formation by malaria parasite. J Pharm Biomed Anal. 1999;20:203–7.PubMedCrossRef
55.
go back to reference Mishra LC, Bhattacharya A, Bhasin VK. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop. 2009;109:194–8.PubMedCrossRef Mishra LC, Bhattacharya A, Bhasin VK. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop. 2009;109:194–8.PubMedCrossRef
56.
go back to reference Sisodia BS, Negi AS, Darokar MP, Dwivedi UN, Khanuja SP. Antiplasmodial activity of steroidal chalcones: evaluation of their effect on hemozoin synthesis and the new permeation pathway of Plasmodium falciparum-infected erythrocyte membrane. Chem Biol Drug Des. 2012;9:610–5.CrossRef Sisodia BS, Negi AS, Darokar MP, Dwivedi UN, Khanuja SP. Antiplasmodial activity of steroidal chalcones: evaluation of their effect on hemozoin synthesis and the new permeation pathway of Plasmodium falciparum-infected erythrocyte membrane. Chem Biol Drug Des. 2012;9:610–5.CrossRef
Metadata
Title
In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes
Authors
Shweta Sinha
Daniela I. Batovska
Bikash Medhi
B. D. Radotra
Ashish Bhalla
Nadezhda Markova
Rakesh Sehgal
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3060-z

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue