Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Plasmodium Falciparum | Research

Validation of Plasmodium falciparum dUTPase as the target of 5′-tritylated deoxyuridine analogues with anti-malarial activity

Authors: Guiomar Pérez-Moreno, Paula Sánchez-Carrasco, Luis Miguel Ruiz-Pérez, Nils Gunnar Johansson, Sylke Müller, Beatriz Baragaña, Shahienaz Emma Hampton, Ian Hugh Gilbert, Marcel Kaiser, Sandipan Sarkar, Thiyagamurthy Pandurangan, Vijeesh Kumar, Dolores González-Pacanowska

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5′-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported.

Methods

To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein.

Results

Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3′ replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5′-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol.

Conclusion

These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
2.
go back to reference Riegelhaupt PM, Frame IJ, Akabas MH. Transmembrane segment 11 appears to line the purine permeation pathway of the Plasmodium falciparum equilibrative nucleoside transporter 1 (PfENT1). J Biol Chem. 2010;285:17001–10.CrossRef Riegelhaupt PM, Frame IJ, Akabas MH. Transmembrane segment 11 appears to line the purine permeation pathway of the Plasmodium falciparum equilibrative nucleoside transporter 1 (PfENT1). J Biol Chem. 2010;285:17001–10.CrossRef
3.
go back to reference Phillips MA, Rathod PK. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect Disord Drug Targets. 2010;10:226–39.CrossRef Phillips MA, Rathod PK. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect Disord Drug Targets. 2010;10:226–39.CrossRef
4.
go back to reference Madrid DC, Ting LM, Waller KL, Schramm VL, Kim K. Plasmodium falciparum purine nucleoside phosphorylase is critical for viability of malaria parasites. J Biol Chem. 2008;283:35899–907.CrossRef Madrid DC, Ting LM, Waller KL, Schramm VL, Kim K. Plasmodium falciparum purine nucleoside phosphorylase is critical for viability of malaria parasites. J Biol Chem. 2008;283:35899–907.CrossRef
5.
go back to reference Gadsden MH, McIntosh EM, Game JC, Wilson PJ, Haynes RH. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 1993;12:4425–31.CrossRef Gadsden MH, McIntosh EM, Game JC, Wilson PJ, Haynes RH. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 1993;12:4425–31.CrossRef
6.
go back to reference el-Hajj HH, Zhang H, Weiss B. Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J Bacteriol. 1988;170:1069–75.CrossRef el-Hajj HH, Zhang H, Weiss B. Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J Bacteriol. 1988;170:1069–75.CrossRef
7.
go back to reference Hampton SE, Baragana B, Schipani A, Bosch-Navarrete C, Musso-Buendia JA, Recio E, et al. Design, synthesis, and evaluation of 5′-diphenyl nucleoside analogues as inhibitors of the Plasmodium falciparum dUTPase. ChemMedChem. 2011;6:1816–31.CrossRef Hampton SE, Baragana B, Schipani A, Bosch-Navarrete C, Musso-Buendia JA, Recio E, et al. Design, synthesis, and evaluation of 5′-diphenyl nucleoside analogues as inhibitors of the Plasmodium falciparum dUTPase. ChemMedChem. 2011;6:1816–31.CrossRef
8.
go back to reference Nguyen C, Ruda GF, Schipani A, Kasinathan G, Leal I, Musso-Buendia A, et al. Acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. J Med Chem. 2006;49:4183–95.CrossRef Nguyen C, Ruda GF, Schipani A, Kasinathan G, Leal I, Musso-Buendia A, et al. Acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. J Med Chem. 2006;49:4183–95.CrossRef
9.
go back to reference Ruda GF, Nguyen C, Ziemkowski P, Felczak K, Kasinathan G, Musso-Buendia A, et al. Modified 5′-trityl nucleosides as inhibitors of Plasmodium falciparum dUTPase. ChemMedChem. 2011;6:309–20.CrossRef Ruda GF, Nguyen C, Ziemkowski P, Felczak K, Kasinathan G, Musso-Buendia A, et al. Modified 5′-trityl nucleosides as inhibitors of Plasmodium falciparum dUTPase. ChemMedChem. 2011;6:309–20.CrossRef
10.
go back to reference Baragana B, McCarthy O, Sanchez P, Bosch-Navarrete C, Kaiser M, Brun R, et al. beta-Branched acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. Bioorg Med Chem. 2011;19:2378–91.CrossRef Baragana B, McCarthy O, Sanchez P, Bosch-Navarrete C, Kaiser M, Brun R, et al. beta-Branched acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. Bioorg Med Chem. 2011;19:2378–91.CrossRef
11.
go back to reference McIntosh EM, Haynes RH. dUTP pyrophosphatase as a potential target for chemotherapeutic drug development. Acta Biochim Pol. 1997;44:159–71.PubMed McIntosh EM, Haynes RH. dUTP pyrophosphatase as a potential target for chemotherapeutic drug development. Acta Biochim Pol. 1997;44:159–71.PubMed
12.
go back to reference Persson R, Cedergren-Zeppezauer ES, Wilson KS. Homotrimeric dUTPases; structural solutions for specific recognition and hydrolysis of dUTP. Curr Protein Pept Sci. 2001;2:287–300.CrossRef Persson R, Cedergren-Zeppezauer ES, Wilson KS. Homotrimeric dUTPases; structural solutions for specific recognition and hydrolysis of dUTP. Curr Protein Pept Sci. 2001;2:287–300.CrossRef
13.
go back to reference Whittingham JL, Leal I, Nguyen C, Kasinathan G, Bell E, Jones AF, et al. dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors. Structure. 2005;13:329–38.CrossRef Whittingham JL, Leal I, Nguyen C, Kasinathan G, Bell E, Jones AF, et al. dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors. Structure. 2005;13:329–38.CrossRef
14.
go back to reference Mol CD, Harris JM, McIntosh EM, Tainer JA. Human dUTP pyrophosphatase: uracil recognition by a beta hairpin and active sites formed by three separate subunits. Structure. 1996;4:1077–92.CrossRef Mol CD, Harris JM, McIntosh EM, Tainer JA. Human dUTP pyrophosphatase: uracil recognition by a beta hairpin and active sites formed by three separate subunits. Structure. 1996;4:1077–92.CrossRef
15.
go back to reference Kumar H, Kehrer J, Singer M, Reinig M, Santos JM, Mair GR, et al. Functional genetic evaluation of DNA house-cleaning enzymes in the malaria parasite: dUTPase and Ap4AH are essential in Plasmodium berghei but ITPase and NDH are dispensable. Expert Opin Ther Targets. 2019;23:251–61.CrossRef Kumar H, Kehrer J, Singer M, Reinig M, Santos JM, Mair GR, et al. Functional genetic evaluation of DNA house-cleaning enzymes in the malaria parasite: dUTPase and Ap4AH are essential in Plasmodium berghei but ITPase and NDH are dispensable. Expert Opin Ther Targets. 2019;23:251–61.CrossRef
16.
go back to reference Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.CrossRef Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.CrossRef
17.
go back to reference Crabb BS, Triglia T, Waterkeyn JG, Cowman AF. Stable transgene expression in Plasmodium falciparum. Mol Biochem Parasitol. 1997;90:131–44.CrossRef Crabb BS, Triglia T, Waterkeyn JG, Cowman AF. Stable transgene expression in Plasmodium falciparum. Mol Biochem Parasitol. 1997;90:131–44.CrossRef
18.
go back to reference McCoubrie JE, Miller SK, Sargeant T, Good RT, Hodder AN, Speed TP, et al. Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun. 2007;75:5565–74.CrossRef McCoubrie JE, Miller SK, Sargeant T, Good RT, Hodder AN, Speed TP, et al. Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun. 2007;75:5565–74.CrossRef
19.
go back to reference Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48:1803–6.CrossRef Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48:1803–6.CrossRef
20.
go back to reference Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRef Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRef
21.
go back to reference Horowitz RW, Zhang H, Schwartz EL, Ladner RD, Wadler S. Measurement of deoxyuridine triphosphate and thymidine triphosphate in the extracts of thymidylate synthase-inhibited cells using a modified DNA polymerase assay. Biochem Pharmacol. 1997;54:635–8.CrossRef Horowitz RW, Zhang H, Schwartz EL, Ladner RD, Wadler S. Measurement of deoxyuridine triphosphate and thymidine triphosphate in the extracts of thymidylate synthase-inhibited cells using a modified DNA polymerase assay. Biochem Pharmacol. 1997;54:635–8.CrossRef
22.
go back to reference Pena-Diaz J, Montalvetti A, Flores CL, Constan A, Hurtado-Guerrero R, De Souza W, et al. Mitochondrial localization of the mevalonate pathway enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae. Mol Biol Cell. 2004;15:1356–63.CrossRef Pena-Diaz J, Montalvetti A, Flores CL, Constan A, Hurtado-Guerrero R, De Souza W, et al. Mitochondrial localization of the mevalonate pathway enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae. Mol Biol Cell. 2004;15:1356–63.CrossRef
23.
go back to reference Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403:906–9.CrossRef Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403:906–9.CrossRef
24.
go back to reference Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;137:13–21.CrossRef Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;137:13–21.CrossRef
25.
go back to reference Cassera MB, Zhang Y, Hazleton KZ, Schramm VL. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem. 2011;11:2103–15.CrossRef Cassera MB, Zhang Y, Hazleton KZ, Schramm VL. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem. 2011;11:2103–15.CrossRef
26.
go back to reference Pecsi I, Hirmondo R, Brown AC, Lopata A, Parish T, Vertessy BG, et al. The dUTPase enzyme is essential in Mycobacterium smegmatis. PLoS ONE. 2012;7:e37461.CrossRef Pecsi I, Hirmondo R, Brown AC, Lopata A, Parish T, Vertessy BG, et al. The dUTPase enzyme is essential in Mycobacterium smegmatis. PLoS ONE. 2012;7:e37461.CrossRef
27.
go back to reference Castillo-Acosta VM, Estevez AM, Vidal AE, Ruiz-Perez LM, Gonzalez-Pacanowska D. Depletion of dimeric all-alpha dUTPase induces DNA strand breaks and impairs cell cycle progression in Trypanosoma brucei. Int J Biochem Cell Biol. 2008;40:2901–13.CrossRef Castillo-Acosta VM, Estevez AM, Vidal AE, Ruiz-Perez LM, Gonzalez-Pacanowska D. Depletion of dimeric all-alpha dUTPase induces DNA strand breaks and impairs cell cycle progression in Trypanosoma brucei. Int J Biochem Cell Biol. 2008;40:2901–13.CrossRef
28.
go back to reference Castillo-Acosta VM, Aguilar-Pereyra F, Garcia-Caballero D, Vidal AE, Ruiz-Perez LM, Gonzalez-Pacanowska D. Pyrimidine requirements in deoxyuridine triphosphate nucleotidohydrolase deficient Trypanosoma brucei mutants. Mol Biochem Parasitol. 2013;187:9–13.CrossRef Castillo-Acosta VM, Aguilar-Pereyra F, Garcia-Caballero D, Vidal AE, Ruiz-Perez LM, Gonzalez-Pacanowska D. Pyrimidine requirements in deoxyuridine triphosphate nucleotidohydrolase deficient Trypanosoma brucei mutants. Mol Biochem Parasitol. 2013;187:9–13.CrossRef
29.
go back to reference Slavic K, Straschil U, Reininger L, Doerig C, Morin C, Tewari R, et al. Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol. 2010;75:1402–13.CrossRef Slavic K, Straschil U, Reininger L, Doerig C, Morin C, Tewari R, et al. Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol. 2010;75:1402–13.CrossRef
30.
go back to reference Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018;360:506–17. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018;360:506–17.
31.
go back to reference Nguyen C, Kasinathan G, Leal-Cortijo I, Musso-Buendia A, Kaiser M, Brun R, et al. Deoxyuridine triphosphate nucleotidohydrolase as a potential antiparasitic drug target. J Med Chem. 2005;48:5942–54.CrossRef Nguyen C, Kasinathan G, Leal-Cortijo I, Musso-Buendia A, Kaiser M, Brun R, et al. Deoxyuridine triphosphate nucleotidohydrolase as a potential antiparasitic drug target. J Med Chem. 2005;48:5942–54.CrossRef
Metadata
Title
Validation of Plasmodium falciparum dUTPase as the target of 5′-tritylated deoxyuridine analogues with anti-malarial activity
Authors
Guiomar Pérez-Moreno
Paula Sánchez-Carrasco
Luis Miguel Ruiz-Pérez
Nils Gunnar Johansson
Sylke Müller
Beatriz Baragaña
Shahienaz Emma Hampton
Ian Hugh Gilbert
Marcel Kaiser
Sandipan Sarkar
Thiyagamurthy Pandurangan
Vijeesh Kumar
Dolores González-Pacanowska
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3025-2

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.