Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Chloroquin | Research

A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synthesis mediated metal nanoparticles: overview, challenges and future perspectives

Authors: Loick P. Kojom Foko, Francois Eya’ane Meva, Carole E. Eboumbou Moukoko, Agnes A. Ntoumba, Marie I. Ngaha Njila, Philippe Belle Ebanda Kedi, Lawrence Ayong, Leopold G. Lehman

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

The recent emergence in Southeast Asia of artemisinin resistance poses major threats to malaria control and elimination globally. Green nanotechnologies can constitute interesting tools for discovering anti-malarial medicines. This systematic review focused on the green synthesis of metal nanoparticles as potential source of new antiplasmodial drugs.

Methods

Seven electronic database were used following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Results

A total of 17 papers were included in the systematic review. 82.4% of the studies used plant leaves to produce nanoparticles (NPs) while three studies used microorganisms, including bacteria and fungi. Silver was the main metal precursor for the synthesis of NPs. The majority of studies obtained nanoparticles spherical in shape, with sizes ranging between 4 and 65 nm, and reported no or little cytotoxic effect of the NPs. Results based on 50% inhibitory concentration (IC50) varied between studies but, in general, could be divided into three NP categories; (i) those more effective than positive controls, (ii) those more effective than corresponding plant extracts and, (iii) those less effective than the positive controls or plant extracts.

Conclusions

This study highlights the high antiplasmodial potential of green-synthesized metal nanoparticles thereby underscoring the possibility to find and develop new anti-malarial drugs based on green synthesis approaches. However, the review also highlights the need for extensive in vitro and in vivo studies to confirm their safety in humans and the elucidation of the mechanism of action.

Graphical abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Factsheet on leading causes of deaths in Africa. Geneva: World Health Organization; 2017. WHO. Factsheet on leading causes of deaths in Africa. Geneva: World Health Organization; 2017.
2.
go back to reference White NJ, Pukrittayakamee S, Tinh Hien T, Abul Faiz M, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;391:1608–21. White NJ, Pukrittayakamee S, Tinh Hien T, Abul Faiz M, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;391:1608–21.
4.
go back to reference Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J. 2014;13:68.PubMedPubMedCentralCrossRef Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J. 2014;13:68.PubMedPubMedCentralCrossRef
6.
go back to reference Souleymane D, Abdoulaye AD, Ogobara KD. Methods for monitoring artemisinin-based combination therapies efficacy. Clin Rev Opin. 2017;8:1–13.CrossRef Souleymane D, Abdoulaye AD, Ogobara KD. Methods for monitoring artemisinin-based combination therapies efficacy. Clin Rev Opin. 2017;8:1–13.CrossRef
7.
go back to reference Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in Western Cambodia. N Engl J Med. 2008;359:2619–20.PubMedCrossRef Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in Western Cambodia. N Engl J Med. 2008;359:2619–20.PubMedCrossRef
8.
go back to reference Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016;4:3.CrossRef Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016;4:3.CrossRef
9.
go back to reference Tilley L, Straimer J, Gnadig NF, Ralph SA, Fidock DA. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2017;32:682–96.CrossRef Tilley L, Straimer J, Gnadig NF, Ralph SA, Fidock DA. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2017;32:682–96.CrossRef
10.
go back to reference Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017;41:34–48.PubMedPubMedCentralCrossRef Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017;41:34–48.PubMedPubMedCentralCrossRef
11.
go back to reference Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan C, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.PubMedPubMedCentralCrossRef Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan C, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.PubMedPubMedCentralCrossRef
12.
go back to reference Miotto O, Almagro-garcia J, Manske M, Macinnis B, Campino S, Rockett KA, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet. 2013;45:648–55.PubMedCrossRef Miotto O, Almagro-garcia J, Manske M, Macinnis B, Campino S, Rockett KA, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet. 2013;45:648–55.PubMedCrossRef
13.
go back to reference Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorpe AM, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin. Proc Natl Acad Sci USA. 2013;110:240–5.PubMedCrossRef Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorpe AM, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin. Proc Natl Acad Sci USA. 2013;110:240–5.PubMedCrossRef
14.
go back to reference Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. Drug Ther. 2009;361:455–67. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. Drug Ther. 2009;361:455–67.
15.
go back to reference Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.PubMedPubMedCentralCrossRef Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.PubMedPubMedCentralCrossRef
16.
go back to reference Ashley E, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2015;371:411–23.CrossRef Ashley E, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2015;371:411–23.CrossRef
17.
go back to reference Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.PubMedCrossRef Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.PubMedCrossRef
18.
go back to reference Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.PubMed Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.PubMed
19.
go back to reference Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.CrossRefPubMed Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.CrossRefPubMed
20.
go back to reference Trape J-F. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg. 2001;64:12–7.PubMedCrossRef Trape J-F. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg. 2001;64:12–7.PubMedCrossRef
21.
go back to reference Trape J-F, Pison G, Spiegel A, Enel C, Rogier C. Combating malaria in Africa. Trends Parasitol. 2002;18:224–30.PubMedCrossRef Trape J-F, Pison G, Spiegel A, Enel C, Rogier C. Combating malaria in Africa. Trends Parasitol. 2002;18:224–30.PubMedCrossRef
22.
go back to reference Wongsrichanalai C, Sibley CH. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect. 2013;19:908–16.PubMedCrossRef Wongsrichanalai C, Sibley CH. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect. 2013;19:908–16.PubMedCrossRef
23.
go back to reference Djaman JA, Olefongo D, Ako AB, Roman J, Ngane VF, Basco LK, et al. Molecular epidemiology of malaria in Cameroon and Côte d’Ivoire. XXXI. Kelch 13 propeller sequences in Plasmodium falciparum isolates before and after implementation of artemisinin-based combination therapy. Am J Trop Med Hyg. 2017;97:222–4.PubMedPubMedCentralCrossRef Djaman JA, Olefongo D, Ako AB, Roman J, Ngane VF, Basco LK, et al. Molecular epidemiology of malaria in Cameroon and Côte d’Ivoire. XXXI. Kelch 13 propeller sequences in Plasmodium falciparum isolates before and after implementation of artemisinin-based combination therapy. Am J Trop Med Hyg. 2017;97:222–4.PubMedPubMedCentralCrossRef
24.
go back to reference Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-saharan Africa. J Infect Dis. 2015;211:1352–5.PubMed Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-saharan Africa. J Infect Dis. 2015;211:1352–5.PubMed
25.
go back to reference Murugan K, Anitha J, Suresh U, Rajaganesh R, Panneerselvam C, Aziz AT, et al. Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus? Hydrobiologia. 2017;797:335–50.CrossRef Murugan K, Anitha J, Suresh U, Rajaganesh R, Panneerselvam C, Aziz AT, et al. Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus? Hydrobiologia. 2017;797:335–50.CrossRef
26.
go back to reference Borrmann S, Straimer J, Mwai L, Abdi A, Rippert A, Okombo J, et al. Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep. 2013;3:3318.PubMedPubMedCentralCrossRef Borrmann S, Straimer J, Mwai L, Abdi A, Rippert A, Okombo J, et al. Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep. 2013;3:3318.PubMedPubMedCentralCrossRef
27.
go back to reference Torrentino-Madamet M, Fall B, Benoit N, Camara C, Amalvict R, Fall M, et al. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J. 2014;13:472.PubMedPubMedCentralCrossRef Torrentino-Madamet M, Fall B, Benoit N, Camara C, Amalvict R, Fall M, et al. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J. 2014;13:472.PubMedPubMedCentralCrossRef
28.
go back to reference Cooper RA, Conrad MD, Watson QD, Huezo SJ, Ninsiima H, Tumwebaze P, et al. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicr Agents Chemother. 2015;59:5061–4.CrossRef Cooper RA, Conrad MD, Watson QD, Huezo SJ, Ninsiima H, Tumwebaze P, et al. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicr Agents Chemother. 2015;59:5061–4.CrossRef
29.
go back to reference Ouattara A, Kone A, Adams M, Fofana B, Maiga AW, Hampton S, et al. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg. 2015;92:1202–6.PubMedPubMedCentralCrossRef Ouattara A, Kone A, Adams M, Fofana B, Maiga AW, Hampton S, et al. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg. 2015;92:1202–6.PubMedPubMedCentralCrossRef
30.
go back to reference Menard S, Tchoufack JN, Maffo CN, Nsango SE, Iriart X, Abate L, et al. Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J. 2016;15:572.PubMedPubMedCentralCrossRef Menard S, Tchoufack JN, Maffo CN, Nsango SE, Iriart X, Abate L, et al. Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J. 2016;15:572.PubMedPubMedCentralCrossRef
31.
go back to reference Taylor SM, Parobek CM, De Conti DK, Kayentao K, Coulibaly SO, Greenwood BM, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis. 2015;211:680–8.PubMedCrossRef Taylor SM, Parobek CM, De Conti DK, Kayentao K, Coulibaly SO, Greenwood BM, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis. 2015;211:680–8.PubMedCrossRef
33.
go back to reference Ealias AM, Saravanakumar M. A review on the classification, characterisation, synthesis of nanoparticles and their application. Mater Sci Eng. 2017;263:032019. Ealias AM, Saravanakumar M. A review on the classification, characterisation, synthesis of nanoparticles and their application. Mater Sci Eng. 2017;263:032019.
35.
go back to reference Shakeel A, Mudasir A, Babu Lal S, Saiqa I. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7:17–28.CrossRef Shakeel A, Mudasir A, Babu Lal S, Saiqa I. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7:17–28.CrossRef
36.
go back to reference Khandel P, Shahi SK. Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct. 2016;6:1–24. Khandel P, Shahi SK. Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct. 2016;6:1–24.
37.
go back to reference Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol. 2014;5:1–7.CrossRef Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol. 2014;5:1–7.CrossRef
38.
go back to reference Patra JK, Baek KH. Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential. IET Nanobiotechnol. 2016;10:326–33.PubMedCrossRefPubMedCentral Patra JK, Baek KH. Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential. IET Nanobiotechnol. 2016;10:326–33.PubMedCrossRefPubMedCentral
39.
go back to reference Patra JK, Baek KH. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol. 2017;8:167.PubMedPubMedCentralCrossRef Patra JK, Baek KH. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol. 2017;8:167.PubMedPubMedCentralCrossRef
40.
go back to reference Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop São Paulo. 2015;57:165–7.PubMedPubMedCentralCrossRef Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop São Paulo. 2015;57:165–7.PubMedPubMedCentralCrossRef
41.
go back to reference Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci. 2017;7:225–41.CrossRef Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci. 2017;7:225–41.CrossRef
42.
go back to reference Narasimha G. Virucidal properties of silver nanoparticles synthesized from white button mushrooms (Agaricus bisporus). Int J Nano Dimens. 2016;3:181–4. Narasimha G. Virucidal properties of silver nanoparticles synthesized from white button mushrooms (Agaricus bisporus). Int J Nano Dimens. 2016;3:181–4.
43.
go back to reference Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, et al. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS ONE. 2015;10:e0141050.PubMedPubMedCentralCrossRef Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, et al. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS ONE. 2015;10:e0141050.PubMedPubMedCentralCrossRef
44.
go back to reference Dauda K, Busari Z, Morenikeji O, Afolayan F. Poly (d-l-lactic-co-glycolic acid) -based artesunate nanoparticles: formulation, antimalarial and toxicity assessments. J Zhejiang Univ Sci B. 2017;18:977–85.PubMedPubMedCentralCrossRef Dauda K, Busari Z, Morenikeji O, Afolayan F. Poly (d-l-lactic-co-glycolic acid) -based artesunate nanoparticles: formulation, antimalarial and toxicity assessments. J Zhejiang Univ Sci B. 2017;18:977–85.PubMedPubMedCentralCrossRef
45.
go back to reference Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, et al. Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomedicine. 2019;18:221–33.PubMedCrossRef Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, et al. Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomedicine. 2019;18:221–33.PubMedCrossRef
46.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.PubMedPubMedCentralCrossRef
47.
go back to reference Panneerselvam C, Ponarulselvam S, Murugan K. Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res. 2011;3:208–17. Panneerselvam C, Ponarulselvam S, Murugan K. Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res. 2011;3:208–17.
48.
go back to reference Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed. 2012;2:574–80.PubMedPubMedCentralCrossRef Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed. 2012;2:574–80.PubMedPubMedCentralCrossRef
49.
go back to reference Mishra A, Kaushik NK, Sardar M, Sahal D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloid Surf B. 2013;111:713–8CrossRef Mishra A, Kaushik NK, Sardar M, Sahal D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloid Surf B. 2013;111:713–8CrossRef
50.
go back to reference Panneerselvam C, Murugan K, Amerasan D. Biosynthesis of silver nanoparticles using plant extract and its anti-plasmodial property. Adv Mater Res. 2015;1086:11–30.CrossRef Panneerselvam C, Murugan K, Amerasan D. Biosynthesis of silver nanoparticles using plant extract and its anti-plasmodial property. Adv Mater Res. 2015;1086:11–30.CrossRef
51.
go back to reference Rajakumar G, Rahuman AA, Chung IM, Kirthi AV, Marimuthu S, Anbarasan K. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res. 2015;114:1397–406.PubMedCrossRef Rajakumar G, Rahuman AA, Chung IM, Kirthi AV, Marimuthu S, Anbarasan K. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res. 2015;114:1397–406.PubMedCrossRef
52.
go back to reference Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, et al. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res. 2015;114:4087–97.PubMedCrossRef Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, et al. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res. 2015;114:4087–97.PubMedCrossRef
53.
go back to reference Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, et al. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res. 2016;23:7543–58.CrossRef Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, et al. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res. 2016;23:7543–58.CrossRef
54.
go back to reference Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, et al. Fern-synthesized nanoparticles in the fight against malaria: LC/ MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res. 2016;115:997–1013.PubMedCrossRef Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, et al. Fern-synthesized nanoparticles in the fight against malaria: LC/ MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res. 2016;115:997–1013.PubMedCrossRef
55.
go back to reference Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, et al. Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res. 2016;23:16671–85. CrossRef Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, et al. Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res. 2016;23:16671–85. CrossRef
56.
go back to reference Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, et al. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci. 2016;106:14–22.PubMedCrossRef Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, et al. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci. 2016;106:14–22.PubMedCrossRef
57.
go back to reference Dutta PP, Bordoloi M, Gogoi K, Roy S, Narzary B, Bhattacharyya DR, et al. Antimalarial silver and gold nanoparticles: green synthesis, characterization and in vitro study. Biomed Pharmacother. 2017;91:567–80.PubMedCrossRef Dutta PP, Bordoloi M, Gogoi K, Roy S, Narzary B, Bhattacharyya DR, et al. Antimalarial silver and gold nanoparticles: green synthesis, characterization and in vitro study. Biomed Pharmacother. 2017;91:567–80.PubMedCrossRef
58.
go back to reference Sardana M, Agarwal V, Pant A, Kapoor V, Pandey KC, Kumar S. Antiplasmodial activity of silver nanoparticles: a novel green synthesis approach. Asian Pac J Trop Biomed. 2018;8:268–72.CrossRef Sardana M, Agarwal V, Pant A, Kapoor V, Pandey KC, Kumar S. Antiplasmodial activity of silver nanoparticles: a novel green synthesis approach. Asian Pac J Trop Biomed. 2018;8:268–72.CrossRef
59.
go back to reference Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum. J Appl Biomed. 2018;16:378–86.CrossRef Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum. J Appl Biomed. 2018;16:378–86.CrossRef
60.
go back to reference Rotimi L, Ojemaye MO, Okoh OO, Sadimenko A, Okoh AI. Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle. Green Chem Lett Rev. 2019;12:61–8.CrossRef Rotimi L, Ojemaye MO, Okoh OO, Sadimenko A, Okoh AI. Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle. Green Chem Lett Rev. 2019;12:61–8.CrossRef
61.
go back to reference Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KVB. Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine. 2013;9:951–60.PubMedCrossRef Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KVB. Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine. 2013;9:951–60.PubMedCrossRef
62.
go back to reference Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al. Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol Int. 2016;65:276–84.PubMedCrossRef Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al. Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol Int. 2016;65:276–84.PubMedCrossRef
63.
go back to reference Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, et al. Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res. 2017;116:495–502.PubMedCrossRef Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, et al. Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res. 2017;116:495–502.PubMedCrossRef
64.
go back to reference Das R, Ali ME, Hamid SBA. Current applications of x-ray powder diffraction—a review. Rev Adv Mater Sci. 2014;38:95–109. Das R, Ali ME, Hamid SBA. Current applications of x-ray powder diffraction—a review. Rev Adv Mater Sci. 2014;38:95–109.
65.
go back to reference Faculty of Hanson. Introduction to structure determination infrared: characteristic frequencies. 2013. p. 1–4. Faculty of Hanson. Introduction to structure determination infrared: characteristic frequencies. 2013. p. 1–4.
66.
go back to reference Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.CrossRef Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.CrossRef
67.
go back to reference Peng L, Calton GJ, Burnett JW. Effect of borohydride reduction on antibodies. Appl Biochem Biotechnol. 1987;14:91–9.PubMedCrossRef Peng L, Calton GJ, Burnett JW. Effect of borohydride reduction on antibodies. Appl Biochem Biotechnol. 1987;14:91–9.PubMedCrossRef
68.
go back to reference Kalishwaralal K, Deepak V, Ram Kumar Pandian SB, Kottaisamy M, BarathManiKanth S, Kartikeyan B, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloid Surf B. 2010;77:257–62.CrossRef Kalishwaralal K, Deepak V, Ram Kumar Pandian SB, Kottaisamy M, BarathManiKanth S, Kartikeyan B, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloid Surf B. 2010;77:257–62.CrossRef
69.
go back to reference Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2016;115:23–34.PubMedCrossRef Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2016;115:23–34.PubMedCrossRef
70.
go back to reference Kaler A, Patel N, Banerjee UC. Green synthesis of silver nanoparticles. Curr Res Inform Pharm Sci. 2010;11:68–71. Kaler A, Patel N, Banerjee UC. Green synthesis of silver nanoparticles. Curr Res Inform Pharm Sci. 2010;11:68–71.
71.
go back to reference Eya’ane Meva F, Okalla Ebongue C, Fannang SV, Segnou ML, Ntoumba AA, Belle Ebanda Kedi P, et al. Natural substances for the synthesis of silver nanoparticles against Escherichia coli: the case of Megaphrynium macrostachyum (Marantaceae), Corchorus olitorus (Tiliaceae), Ricinodendron heudelotii (Euphorbiaceae), Gnetum bucholzianum (Gnetaceae), and Ipomoea batatas (Convulvulaceae). J Nanomater. 2017;2017:1–6.CrossRef Eya’ane Meva F, Okalla Ebongue C, Fannang SV, Segnou ML, Ntoumba AA, Belle Ebanda Kedi P, et al. Natural substances for the synthesis of silver nanoparticles against Escherichia coli: the case of Megaphrynium macrostachyum (Marantaceae), Corchorus olitorus (Tiliaceae), Ricinodendron heudelotii (Euphorbiaceae), Gnetum bucholzianum (Gnetaceae), and Ipomoea batatas (Convulvulaceae). J Nanomater. 2017;2017:1–6.CrossRef
72.
go back to reference Jung WK, Hye CK, Ki WK, Shin S, So HK, Yong HP. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.PubMedPubMedCentralCrossRef Jung WK, Hye CK, Ki WK, Shin S, So HK, Yong HP. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.PubMedPubMedCentralCrossRef
73.
74.
go back to reference Tran QH, Nguyen VQ, Le A. Silver nanoparticles: synthesis, properties, toxicology. Adv Nat Sci Nanosci Nanotechnol. 2013;4:033001.CrossRef Tran QH, Nguyen VQ, Le A. Silver nanoparticles: synthesis, properties, toxicology. Adv Nat Sci Nanosci Nanotechnol. 2013;4:033001.CrossRef
75.
go back to reference Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.PubMedPubMedCentralCrossRef Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.PubMedPubMedCentralCrossRef
76.
77.
go back to reference Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012;3:035004.CrossRef Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012;3:035004.CrossRef
78.
go back to reference Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water conditions. Adv Nat Sci Nanosci Nanotechnol. 2012;3:035006.CrossRef Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water conditions. Adv Nat Sci Nanosci Nanotechnol. 2012;3:035006.CrossRef
79.
go back to reference Christy AJ, Umadevi M. Synthesis and characterization of monodispersed silver nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2012;3:035013.CrossRef Christy AJ, Umadevi M. Synthesis and characterization of monodispersed silver nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2012;3:035013.CrossRef
80.
go back to reference Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–49.CrossRef Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–49.CrossRef
81.
go back to reference Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. 2014;2014:498420.PubMedPubMedCentralCrossRef Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. 2014;2014:498420.PubMedPubMedCentralCrossRef
82.
go back to reference Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine. 2012;8:46–53.PubMedCrossRef Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine. 2012;8:46–53.PubMedCrossRef
83.
go back to reference Chokchaisiri R, Chaichompoo W, Chalermglin R, Suksamrarn A. Potent antiplasmodial alkaloids and flavonoids from Dasymaschalon acuminatum. Rec Nat Prod. 2015;9:243–6. Chokchaisiri R, Chaichompoo W, Chalermglin R, Suksamrarn A. Potent antiplasmodial alkaloids and flavonoids from Dasymaschalon acuminatum. Rec Nat Prod. 2015;9:243–6.
84.
go back to reference Ovenden SPB, Cobbe M, Kissell R, Birrell GW, Chavchich M, Edstein MD. Phenolic glycosides with antimalarial activity from Grewillea “Poorinda Queen”. J Nat Prod. 2011;74:74–8.PubMedCrossRef Ovenden SPB, Cobbe M, Kissell R, Birrell GW, Chavchich M, Edstein MD. Phenolic glycosides with antimalarial activity from Grewillea “Poorinda Queen”. J Nat Prod. 2011;74:74–8.PubMedCrossRef
85.
go back to reference Messi AN, Ngo Mbing J, Ndongo JT, Nyegue MA, Tchinda AT, Yemeda FL, et al. Phenolic compounds from the roots of Ochna schweinfurthiana and their antioxidant and antiplasmodial activities. Phytochem Lett. 2016;17:119–25.CrossRef Messi AN, Ngo Mbing J, Ndongo JT, Nyegue MA, Tchinda AT, Yemeda FL, et al. Phenolic compounds from the roots of Ochna schweinfurthiana and their antioxidant and antiplasmodial activities. Phytochem Lett. 2016;17:119–25.CrossRef
86.
go back to reference Azebaze AGB, Meyer M, Valentin A, Nguemfo EL, Fomum ZT, Nkengfack AE. Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola Staner L.C. Chem Pharm Bull. 2006;54:111–3.CrossRef Azebaze AGB, Meyer M, Valentin A, Nguemfo EL, Fomum ZT, Nkengfack AE. Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola Staner L.C. Chem Pharm Bull. 2006;54:111–3.CrossRef
87.
go back to reference Azebaze AGB, Mbosso Teinkela JE, Nguemfo EL, Valentin A, Dongmo AB, et al. Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblackia parasite is transmitted by the female mosquito species. Afr Health Sci. 2015;15:835–40.PubMedPubMedCentralCrossRef Azebaze AGB, Mbosso Teinkela JE, Nguemfo EL, Valentin A, Dongmo AB, et al. Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblackia parasite is transmitted by the female mosquito species. Afr Health Sci. 2015;15:835–40.PubMedPubMedCentralCrossRef
88.
go back to reference Kayembe J, Taba K, Ntumba K, Kazadi T. In vitro Antimalarial activity of 11 terpenes isolated from Ocimum gratissimum and Cassia alata leaves. Screening of their binding affinity with haemin. J Plant Stud. 2012;1:168–72. Kayembe J, Taba K, Ntumba K, Kazadi T. In vitro Antimalarial activity of 11 terpenes isolated from Ocimum gratissimum and Cassia alata leaves. Screening of their binding affinity with haemin. J Plant Stud. 2012;1:168–72.
89.
go back to reference Saito AY, Marin Rodriguez AA, Menchaca Vega DS, Sussmann RAC, Kimura EA, Katzin AM. Antimalarial activity of the terpene nerolidol. Int J Antimicrob Agents. 2016;48:641–6.PubMedCrossRef Saito AY, Marin Rodriguez AA, Menchaca Vega DS, Sussmann RAC, Kimura EA, Katzin AM. Antimalarial activity of the terpene nerolidol. Int J Antimicrob Agents. 2016;48:641–6.PubMedCrossRef
90.
go back to reference Yenjai C, Sripontan S, Sriprajun P, Kittakoop P, Jintasirikul A, Tanticharoen M, et al. Coumarins and carbazoles with antiplasmodial activity from Clausena harmandiana. Planta Med. 2000;66:277–9.PubMedCrossRef Yenjai C, Sripontan S, Sriprajun P, Kittakoop P, Jintasirikul A, Tanticharoen M, et al. Coumarins and carbazoles with antiplasmodial activity from Clausena harmandiana. Planta Med. 2000;66:277–9.PubMedCrossRef
91.
go back to reference Abrantes M, Mil-Homens T, Duarte N, Lopes D, Cravo P, Do Céu Madureira M, et al. Antiplasmodial activity of lignans and extracts from Pycnanthus angolensis. Planta Med. 2008;74:1408–12.PubMedCrossRef Abrantes M, Mil-Homens T, Duarte N, Lopes D, Cravo P, Do Céu Madureira M, et al. Antiplasmodial activity of lignans and extracts from Pycnanthus angolensis. Planta Med. 2008;74:1408–12.PubMedCrossRef
92.
go back to reference Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK, et al. Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer Activity (A549 and HeLa cell lines). J Clust Sci. 2017;28:1667–84.CrossRef Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK, et al. Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer Activity (A549 and HeLa cell lines). J Clust Sci. 2017;28:1667–84.CrossRef
93.
go back to reference Çiftci H, Turk M, Tamer U, Karahan S, Menemen Y. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turkish J Biol. 2013;37:573–81.CrossRef Çiftci H, Turk M, Tamer U, Karahan S, Menemen Y. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turkish J Biol. 2013;37:573–81.CrossRef
94.
go back to reference Panyala NR, Peña-Méndez EM, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed. 2012;10:117–29. Panyala NR, Peña-Méndez EM, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed. 2012;10:117–29.
95.
go back to reference Zeyons O. Etudes des interactions physicochimiques et biologiques entre des nanoparticules manufacturées et des bactéries de l’environnement. Thèse de doctorat de l’université Paris VI - Pierre et Marie Curie, Paris, France. 2008. Zeyons O. Etudes des interactions physicochimiques et biologiques entre des nanoparticules manufacturées et des bactéries de l’environnement. Thèse de doctorat de l’université Paris VI - Pierre et Marie Curie, Paris, France. 2008.
96.
go back to reference Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line. Avicenna J Med Biotechnol. 2012;4:35–9.PubMedPubMedCentral Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line. Avicenna J Med Biotechnol. 2012;4:35–9.PubMedPubMedCentral
98.
go back to reference Linder HP, Verboom GA. The evolution of regional species richness: the history of the Southern African flora. Annu Rev Ecol Evol Syst. 2015;46:393–412.CrossRef Linder HP, Verboom GA. The evolution of regional species richness: the history of the Southern African flora. Annu Rev Ecol Evol Syst. 2015;46:393–412.CrossRef
Metadata
Title
A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synthesis mediated metal nanoparticles: overview, challenges and future perspectives
Authors
Loick P. Kojom Foko
Francois Eya’ane Meva
Carole E. Eboumbou Moukoko
Agnes A. Ntoumba
Marie I. Ngaha Njila
Philippe Belle Ebanda Kedi
Lawrence Ayong
Leopold G. Lehman
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2974-9

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue