Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Plasmodia | Research

Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design

Authors: Thommas Mutemi Musyoka, Joyce Njoki Njuguna, Özlem Tastan Bishop

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors.

Methods

Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated.

Results

Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length.

Conclusions

Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.
Appendix
Available only for authorised users
Literature
3.
go back to reference Hemingway J, Pickett J, Ranson H, Magill A, Simard F, Fornadel C, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016;387:1785–8.CrossRefPubMedPubMedCentral Hemingway J, Pickett J, Ranson H, Magill A, Simard F, Fornadel C, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016;387:1785–8.CrossRefPubMedPubMedCentral
4.
go back to reference Alout H, Yameogo B, Djogbénou LS, Chandre F, Dabiré RK, Corbel V, et al. Interplay between Plasmodium infection and resistance to insecticides in vector mosquitoes. J Infect Dis. 2014;210:1464–70.CrossRefPubMed Alout H, Yameogo B, Djogbénou LS, Chandre F, Dabiré RK, Corbel V, et al. Interplay between Plasmodium infection and resistance to insecticides in vector mosquitoes. J Infect Dis. 2014;210:1464–70.CrossRefPubMed
5.
go back to reference Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–21.CrossRefPubMedPubMedCentral Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–21.CrossRefPubMedPubMedCentral
6.
go back to reference Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.CrossRefPubMed Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.CrossRefPubMed
8.
go back to reference Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Emerg Infect Dis. 2016;10:409–29. Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Emerg Infect Dis. 2016;10:409–29.
9.
go back to reference Corey VC, Lukens AK, Istvan ES, Lee MCS, Franco V, Magistrado P, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7:11901.CrossRefPubMedPubMedCentral Corey VC, Lukens AK, Istvan ES, Lee MCS, Franco V, Magistrado P, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7:11901.CrossRefPubMedPubMedCentral
11.
go back to reference Paul AS, Duraisingh MT. Targeting Plasmodium proteases to block malaria parasite escape and entry. Trends Parasitol. 2018;34:95–7.CrossRefPubMed Paul AS, Duraisingh MT. Targeting Plasmodium proteases to block malaria parasite escape and entry. Trends Parasitol. 2018;34:95–7.CrossRefPubMed
12.
go back to reference Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science. 2017;358:518–22.CrossRefPubMedPubMedCentral Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science. 2017;358:518–22.CrossRefPubMedPubMedCentral
13.
go back to reference Alam A. Serine proteases of malaria parasite Plasmodium falciparum: potential as antimalarial drug targets. Interdiscip Perspect Infect Dis. 2014;2014:1–7.CrossRef Alam A. Serine proteases of malaria parasite Plasmodium falciparum: potential as antimalarial drug targets. Interdiscip Perspect Infect Dis. 2014;2014:1–7.CrossRef
14.
go back to reference Gilson PR, Chisholm SA, Crabb BS, de Koning-Ward TF. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J Parasitol. 2017;47:119–27.CrossRefPubMed Gilson PR, Chisholm SA, Crabb BS, de Koning-Ward TF. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J Parasitol. 2017;47:119–27.CrossRefPubMed
15.
go back to reference Qidwai T. Hemoglobin degrading proteases of Plasmodium falciparum as antimalarial drug targets. Curr Drug Targets. 2015;16:1133–41.CrossRefPubMed Qidwai T. Hemoglobin degrading proteases of Plasmodium falciparum as antimalarial drug targets. Curr Drug Targets. 2015;16:1133–41.CrossRefPubMed
16.
go back to reference Alam A. Plasmodium proteases as therapeutic targets against malaria. In: Chakraborti S, Chakraborti T, Dhalla N, editors. Proteases in human diseases. Singapore.: Springer; 2017. p. 69–90.CrossRef Alam A. Plasmodium proteases as therapeutic targets against malaria. In: Chakraborti S, Chakraborti T, Dhalla N, editors. Proteases in human diseases. Singapore.: Springer; 2017. p. 69–90.CrossRef
17.
go back to reference Sijwali PS, Rosenthal PJ. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA. 2004;101:4384–9.CrossRefPubMedPubMedCentral Sijwali PS, Rosenthal PJ. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA. 2004;101:4384–9.CrossRefPubMedPubMedCentral
18.
go back to reference Goldberg DE. Plasmodial hemoglobin degradation: an ordered pathway in a specialized organelle. Infect Agents Dis. 1992;1:207–11.PubMed Goldberg DE. Plasmodial hemoglobin degradation: an ordered pathway in a specialized organelle. Infect Agents Dis. 1992;1:207–11.PubMed
19.
go back to reference Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog. 2006;2:e117.CrossRefPubMedPubMedCentral Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog. 2006;2:e117.CrossRefPubMedPubMedCentral
20.
go back to reference Drew ME, Banerjee R, Uffman EW, Gilbertson S, Rosenthal PJ, Goldberg DE. Plasmodium food vacuole plasmepsins are activated by falcipains. J Biol Chem. 2008;283:12870–6.CrossRefPubMedPubMedCentral Drew ME, Banerjee R, Uffman EW, Gilbertson S, Rosenthal PJ, Goldberg DE. Plasmodium food vacuole plasmepsins are activated by falcipains. J Biol Chem. 2008;283:12870–6.CrossRefPubMedPubMedCentral
21.
go back to reference Dowse TJ, Koussis K, Blackman MJ, Soldati-Favre D. Roles of proteases during invasion and egress by Plasmodium and Toxoplasma. Subcell Biochem. 2008;47:121–39.CrossRefPubMed Dowse TJ, Koussis K, Blackman MJ, Soldati-Favre D. Roles of proteases during invasion and egress by Plasmodium and Toxoplasma. Subcell Biochem. 2008;47:121–39.CrossRefPubMed
22.
go back to reference Rosenthal PJ. Falcipains and other cysteine proteases of malaria parasites. Adv Exp Med Biol. 2011;712:30–48.CrossRefPubMed Rosenthal PJ. Falcipains and other cysteine proteases of malaria parasites. Adv Exp Med Biol. 2011;712:30–48.CrossRefPubMed
23.
go back to reference Hanssen E, Larabell C, Dixon MWA, Knoechel C, Dearnley M, Le Gros M, et al. Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J Struct Biol. 2011;177:224–32.CrossRefPubMedPubMedCentral Hanssen E, Larabell C, Dixon MWA, Knoechel C, Dearnley M, Le Gros M, et al. Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J Struct Biol. 2011;177:224–32.CrossRefPubMedPubMedCentral
24.
go back to reference Krugliak M, Zhang J, Ginsburg H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol. 2002;119:249–56.CrossRefPubMed Krugliak M, Zhang J, Ginsburg H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol. 2002;119:249–56.CrossRefPubMed
25.
go back to reference Goldberg DE, Winzeler EA, Istvan ES, Gluzman I, Dharia NV, Bopp SE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci USA. 2011;108:1627–32.CrossRefPubMedPubMedCentral Goldberg DE, Winzeler EA, Istvan ES, Gluzman I, Dharia NV, Bopp SE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci USA. 2011;108:1627–32.CrossRefPubMedPubMedCentral
26.
go back to reference Gluzman IY, Liu J, Goldberg DE, Gross J, Istvan ES. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci USA. 2006;103:8840–5.CrossRefPubMedPubMedCentral Gluzman IY, Liu J, Goldberg DE, Gross J, Istvan ES. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci USA. 2006;103:8840–5.CrossRefPubMedPubMedCentral
27.
go back to reference Francis SE, Sullivan DJ, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 2002;51:97–123.CrossRef Francis SE, Sullivan DJ, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 2002;51:97–123.CrossRef
28.
go back to reference Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF, Engel J, et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science. 2002;298:2002–6.CrossRefPubMed Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF, Engel J, et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science. 2002;298:2002–6.CrossRefPubMed
29.
go back to reference Eksi S, Czesny B, Greenbaum DC, Bogyo M, Williamson KC. Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Mol Microbiol. 2004;53:243–50.CrossRefPubMed Eksi S, Czesny B, Greenbaum DC, Bogyo M, Williamson KC. Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Mol Microbiol. 2004;53:243–50.CrossRefPubMed
30.
go back to reference Goldberg DE, Klemba M, Rosenthal PJ, Gut J, Kato K, Sijwali PS, et al. Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc Natl Acad Sci USA. 2004;101:8721–6.CrossRefPubMedPubMedCentral Goldberg DE, Klemba M, Rosenthal PJ, Gut J, Kato K, Sijwali PS, et al. Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc Natl Acad Sci USA. 2004;101:8721–6.CrossRefPubMedPubMedCentral
31.
go back to reference Singh N, Sijwali PS, Pandey KC, Rosenthal PJ. Plasmodium falciparum: biochemical characterization of the cysteine protease falcipain-2′. Exp Parasitol. 2006;112:187–92.CrossRefPubMed Singh N, Sijwali PS, Pandey KC, Rosenthal PJ. Plasmodium falciparum: biochemical characterization of the cysteine protease falcipain-2′. Exp Parasitol. 2006;112:187–92.CrossRefPubMed
32.
go back to reference Pandey KC, Dixit R. Structure-function of falcipains: malarial cysteine proteases. J Trop Med. 2012;2012:1–11.CrossRef Pandey KC, Dixit R. Structure-function of falcipains: malarial cysteine proteases. J Trop Med. 2012;2012:1–11.CrossRef
33.
go back to reference Hanspal M, Dua M, Takakuwa Y, Chishti AH, Mizuno A. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood. 2002;100:1048–54.CrossRefPubMed Hanspal M, Dua M, Takakuwa Y, Chishti AH, Mizuno A. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood. 2002;100:1048–54.CrossRefPubMed
34.
go back to reference Dua M, Raphael P, Sijwali PS, Rosenthal PJ, Hanspal M. Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol Biochem Parasitol. 2001;116:95–9.CrossRefPubMed Dua M, Raphael P, Sijwali PS, Rosenthal PJ, Hanspal M. Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol Biochem Parasitol. 2001;116:95–9.CrossRefPubMed
35.
go back to reference Dhawan S, Dua M, Chishti AH, Hanspal M. Ankyrin peptide blocks falcipain-2-mediated malaria parasite release from red blood cells. J Biol Chem. 2003;278:30180–6.CrossRefPubMed Dhawan S, Dua M, Chishti AH, Hanspal M. Ankyrin peptide blocks falcipain-2-mediated malaria parasite release from red blood cells. J Biol Chem. 2003;278:30180–6.CrossRefPubMed
36.
go back to reference Sijwali PS, Koo J, Singh N, Rosenthal PJ. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol. 2006;150:96–106.CrossRefPubMed Sijwali PS, Koo J, Singh N, Rosenthal PJ. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol. 2006;150:96–106.CrossRefPubMed
37.
go back to reference Singh A, Sijwali PS, Rosenthal PJ, Gut J, Shenai BR. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J. 2015;360:481–9. Singh A, Sijwali PS, Rosenthal PJ, Gut J, Shenai BR. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J. 2015;360:481–9.
38.
go back to reference Teixeira C, Gomes JRB, Gomes P. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem. 2011;18:1555–72.CrossRefPubMed Teixeira C, Gomes JRB, Gomes P. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem. 2011;18:1555–72.CrossRefPubMed
39.
go back to reference Marco M, Coteron JM. Falcipain inhibition as a promising antimalarial target. Curr Top Med Chem. 2012;12:408–44.CrossRefPubMed Marco M, Coteron JM. Falcipain inhibition as a promising antimalarial target. Curr Top Med Chem. 2012;12:408–44.CrossRefPubMed
40.
go back to reference Siddiqui FA, Cabrera M, Wang M, Brashear A, Kemirembe K, Wang Z, et al. Plasmodium falciparum falcipain-2a polymorphisms in Southeast Asia and their association with artemisinin resistance. J Infect Dis. 2018;218:434–42.CrossRefPubMedPubMedCentral Siddiqui FA, Cabrera M, Wang M, Brashear A, Kemirembe K, Wang Z, et al. Plasmodium falciparum falcipain-2a polymorphisms in Southeast Asia and their association with artemisinin resistance. J Infect Dis. 2018;218:434–42.CrossRefPubMedPubMedCentral
41.
go back to reference Pandey KC, Sijwali PS, Craik CS, Shenai BR, Choe Y, Singh A, et al. Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. Biochem J. 2004;378:529–38.CrossRefPubMedPubMedCentral Pandey KC, Sijwali PS, Craik CS, Shenai BR, Choe Y, Singh A, et al. Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. Biochem J. 2004;378:529–38.CrossRefPubMedPubMedCentral
42.
go back to reference Prasad R, Atul P, Soni A, Puri SK, Sijwali PS. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. PLoS ONE. 2012;7:e51619.CrossRefPubMedPubMedCentral Prasad R, Atul P, Soni A, Puri SK, Sijwali PS. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. PLoS ONE. 2012;7:e51619.CrossRefPubMedPubMedCentral
43.
go back to reference Vaughan AM, Pei Y, Kappe SHI, Lindner SE, Torii M, Miller JL. Plasmodium yoelii inhibitor of cysteine proteases is exported to exomembrane structures and interacts with yoelipain-2 during asexual blood-stage development. Cell Microbiol. 2013;15:1508–26.CrossRefPubMedPubMedCentral Vaughan AM, Pei Y, Kappe SHI, Lindner SE, Torii M, Miller JL. Plasmodium yoelii inhibitor of cysteine proteases is exported to exomembrane structures and interacts with yoelipain-2 during asexual blood-stage development. Cell Microbiol. 2013;15:1508–26.CrossRefPubMedPubMedCentral
44.
go back to reference Martins TM, Domingos A, Gonçalves LMD, Silveira H, do Rosário V, Caldeira RL, et al. Plasmodium chabaudi: Expression of active recombinant chabaupain-1 and localization studies in Anopheles sp. Exp Parasitol. 2009;122:97–105.CrossRefPubMed Martins TM, Domingos A, Gonçalves LMD, Silveira H, do Rosário V, Caldeira RL, et al. Plasmodium chabaudi: Expression of active recombinant chabaupain-1 and localization studies in Anopheles sp. Exp Parasitol. 2009;122:97–105.CrossRefPubMed
45.
go back to reference Rosenthal PJ, Nelson RG. Isolation and characterization of a cysteine proteinase gene of Plasmodium falciparum. Mol Biochem Parasitol. 1992;51:143–52.CrossRefPubMed Rosenthal PJ, Nelson RG. Isolation and characterization of a cysteine proteinase gene of Plasmodium falciparum. Mol Biochem Parasitol. 1992;51:143–52.CrossRefPubMed
46.
go back to reference Shenai BR, Sijwali PS, Singh A, Rosenthal PJ. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000;275:29000–10.CrossRefPubMed Shenai BR, Sijwali PS, Singh A, Rosenthal PJ. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000;275:29000–10.CrossRefPubMed
47.
go back to reference Tastan Bishop Ö, Kroon M. Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors. J Mol Model. 2011;17:3163–72.CrossRefPubMed Tastan Bishop Ö, Kroon M. Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors. J Mol Model. 2011;17:3163–72.CrossRefPubMed
48.
go back to reference Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog. 2010;6:e1000825.CrossRefPubMedPubMedCentral Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog. 2010;6:e1000825.CrossRefPubMedPubMedCentral
49.
go back to reference Monteiro AC, Abrahamson M, Lima AP, Vannier-Santos MA, Scharfstein J. Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. J Cell Sci. 2001;114:3933–42.PubMed Monteiro AC, Abrahamson M, Lima AP, Vannier-Santos MA, Scharfstein J. Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. J Cell Sci. 2001;114:3933–42.PubMed
50.
go back to reference Musyoka TM, Kanzi AM, Lobb KA, Tastan Bishop Ö. Analysis of non-peptidic compounds as potential malarial inhibitors against Plasmodial cysteine proteases via integrated virtual screening workflow. J Biomol Struct Dyn. 2016;34:2084–101.CrossRefPubMedPubMedCentral Musyoka TM, Kanzi AM, Lobb KA, Tastan Bishop Ö. Analysis of non-peptidic compounds as potential malarial inhibitors against Plasmodial cysteine proteases via integrated virtual screening workflow. J Biomol Struct Dyn. 2016;34:2084–101.CrossRefPubMedPubMedCentral
51.
go back to reference Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol. 2002;120:1–21.CrossRefPubMed Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol. 2002;120:1–21.CrossRefPubMed
52.
go back to reference Dahl EL, Rosenthal PJ. Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol. 2005;139:205–12.CrossRefPubMed Dahl EL, Rosenthal PJ. Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol. 2005;139:205–12.CrossRefPubMed
53.
go back to reference Rozman J, Stojan J, Kuhelj R, Turk V, Turk B. Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett. 1999;459:358–62.CrossRefPubMed Rozman J, Stojan J, Kuhelj R, Turk V, Turk B. Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett. 1999;459:358–62.CrossRefPubMed
54.
go back to reference Gazarini ML, Juliano MA, Assis DM, Araújo MS, Carmona AK, Juliano L, et al. Substrate specificity studies of the cysteine peptidases falcipain-2 and falcipain-3 from Plasmodium falciparum and demonstration of their kininogenase activity. Mol Biochem Parasitol. 2013;187:111–6.CrossRefPubMed Gazarini ML, Juliano MA, Assis DM, Araújo MS, Carmona AK, Juliano L, et al. Substrate specificity studies of the cysteine peptidases falcipain-2 and falcipain-3 from Plasmodium falciparum and demonstration of their kininogenase activity. Mol Biochem Parasitol. 2013;187:111–6.CrossRefPubMed
55.
go back to reference Chakka SK, Kalamuddin M, Sundararaman S, Wei L, Mundra S, Mahesh R, et al. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorganic Med Chem. 2015;23:2221–40.CrossRef Chakka SK, Kalamuddin M, Sundararaman S, Wei L, Mundra S, Mahesh R, et al. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorganic Med Chem. 2015;23:2221–40.CrossRef
56.
go back to reference Hernández González JE, Hernández Alvarez L, Pascutti PG, Valiente PA. Predicting binding modes of reversible peptide-based inhibitors of falcipain-2 consistent with structure–activity relationships. Proteins. 2017;85:1666–83.CrossRefPubMed Hernández González JE, Hernández Alvarez L, Pascutti PG, Valiente PA. Predicting binding modes of reversible peptide-based inhibitors of falcipain-2 consistent with structure–activity relationships. Proteins. 2017;85:1666–83.CrossRefPubMed
57.
go back to reference Musyoka TM, Kanzi AM, Lobb KA, Tastan Bishop Ö. Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs. Sci Rep. 2016;6:23690.CrossRefPubMedPubMedCentral Musyoka TM, Kanzi AM, Lobb KA, Tastan Bishop Ö. Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs. Sci Rep. 2016;6:23690.CrossRefPubMedPubMedCentral
58.
go back to reference Coteron JM, Catterick D, Castro J, Chaparro MJ, Diaz B, Fernandez E, et al. Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J Med Chem. 2010;53:6129–52.CrossRefPubMed Coteron JM, Catterick D, Castro J, Chaparro MJ, Diaz B, Fernandez E, et al. Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J Med Chem. 2010;53:6129–52.CrossRefPubMed
59.
go back to reference Domínguez JN, León C, Rodrigues J, de Gamboa Domínguez N, Gut J, Rosenthal PJ. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J Med Chem. 2005;48:3654–8.CrossRefPubMed Domínguez JN, León C, Rodrigues J, de Gamboa Domínguez N, Gut J, Rosenthal PJ. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J Med Chem. 2005;48:3654–8.CrossRefPubMed
60.
61.
go back to reference Himangini, Pathak DP, Sharma V, Kumar S. Designing novel inhibitors against falcipain-2 of Plasmodium falciparum. Bioorganic Med Chem Lett. 2018;28:1566–9.CrossRef Himangini, Pathak DP, Sharma V, Kumar S. Designing novel inhibitors against falcipain-2 of Plasmodium falciparum. Bioorganic Med Chem Lett. 2018;28:1566–9.CrossRef
62.
go back to reference Ehmke V, Kilchmann F, Heindl C, Cui K, Huang J, Schirmeister T, et al. Peptidomimetic nitriles as selective inhibitors for the malarial cysteine protease falcipain-2. Medchemcomm. 2011;2:800.CrossRef Ehmke V, Kilchmann F, Heindl C, Cui K, Huang J, Schirmeister T, et al. Peptidomimetic nitriles as selective inhibitors for the malarial cysteine protease falcipain-2. Medchemcomm. 2011;2:800.CrossRef
63.
go back to reference Mane UR, Gupta RC, Yadav MR, Naik PP, Nadkarni SS, Giridhar RR. Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review. Expert Opin Ther Pat. 2012;23:165–87.CrossRefPubMed Mane UR, Gupta RC, Yadav MR, Naik PP, Nadkarni SS, Giridhar RR. Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review. Expert Opin Ther Pat. 2012;23:165–87.CrossRefPubMed
64.
go back to reference Desai PV, Patny A, Gut J, Rosenthal PJ, Tekwani B, Srivastava A, et al. Identification of novel parasitic cysteine protease inhibitors by use of virtual screening. 2. The available chemical directory. J Med Chem. 2006;49:1576–84.CrossRefPubMed Desai PV, Patny A, Gut J, Rosenthal PJ, Tekwani B, Srivastava A, et al. Identification of novel parasitic cysteine protease inhibitors by use of virtual screening. 2. The available chemical directory. J Med Chem. 2006;49:1576–84.CrossRefPubMed
66.
go back to reference Sinha S, Singh A, Medhi B, Sehgal R. Systematic review: insight into antimalarial peptide. Int J Pept Res Ther. 2016;22:325–40.CrossRef Sinha S, Singh A, Medhi B, Sehgal R. Systematic review: insight into antimalarial peptide. Int J Pept Res Ther. 2016;22:325–40.CrossRef
67.
go back to reference Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorganic Med Chem. 2018;26:2700–7.CrossRef Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorganic Med Chem. 2018;26:2700–7.CrossRef
69.
go back to reference Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30:351–67.CrossRefPubMed Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30:351–67.CrossRefPubMed
70.
go back to reference Alam S, Panda JJ, Mukherjee TK, Chauhan VS. Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria. J Nanobiotechnology. 2016;14:26.CrossRefPubMedPubMedCentral Alam S, Panda JJ, Mukherjee TK, Chauhan VS. Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria. J Nanobiotechnology. 2016;14:26.CrossRefPubMedPubMedCentral
71.
go back to reference Marques J, Valle-Delgado JJ, Urbán P, Baró E, Prohens R, Mayor A, et al. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine Nanotechnology. 2017;13:515–25.CrossRef Marques J, Valle-Delgado JJ, Urbán P, Baró E, Prohens R, Mayor A, et al. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine Nanotechnology. 2017;13:515–25.CrossRef
72.
go back to reference Coma-Cros EM, Biosca A, Marques J, Carol L, Urbán P, Berenguer D, et al. Polyamidoamine nanoparticles for the oral administration of antimalarial drugs. Pharmaceutics. 2018;10:225.CrossRef Coma-Cros EM, Biosca A, Marques J, Carol L, Urbán P, Berenguer D, et al. Polyamidoamine nanoparticles for the oral administration of antimalarial drugs. Pharmaceutics. 2018;10:225.CrossRef
73.
go back to reference Aurrecoechea C, Ross C, Pennington C, Nayak V, Heiges M, Gao X, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2008;37:D539–43.CrossRefPubMedPubMedCentral Aurrecoechea C, Ross C, Pennington C, Nayak V, Heiges M, Gao X, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2008;37:D539–43.CrossRefPubMedPubMedCentral
74.
go back to reference Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2019;47:D94–9.CrossRefPubMed Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2019;47:D94–9.CrossRefPubMed
75.
go back to reference Rhizobium GE. Complete genome sequence of the Sesbania symbiont and rice. Nucleic Acids Res. 2013;1:13–4. Rhizobium GE. Complete genome sequence of the Sesbania symbiont and rice. Nucleic Acids Res. 2013;1:13–4.
76.
go back to reference Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.CrossRefPubMedPubMedCentral Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.CrossRefPubMedPubMedCentral
77.
go back to reference Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CrossRefPubMedPubMedCentral Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CrossRefPubMedPubMedCentral
78.
79.
go back to reference Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 1998;14:48–54.CrossRefPubMed Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 1998;14:48–54.CrossRefPubMed
80.
go back to reference Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics. 2016;54:5.6.1-5.6.37. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics. 2016;54:5.6.1-5.6.37.
82.
go back to reference Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10.CrossRefPubMedPubMedCentral Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10.CrossRefPubMedPubMedCentral
83.
go back to reference Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997;277:396–404.CrossRefPubMed Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997;277:396–404.CrossRefPubMed
84.
go back to reference Benkert P, Tosatto SCE, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins. 2008;71:261–77.CrossRefPubMed Benkert P, Tosatto SCE, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins. 2008;71:261–77.CrossRefPubMed
85.
go back to reference Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.CrossRef Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.CrossRef
89.
go back to reference Kolinski A, Blaszczyk M, Kurcinski M, Kmiecik S, Jamroz M. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015;43:W419–24.CrossRefPubMedPubMedCentral Kolinski A, Blaszczyk M, Kurcinski M, Kmiecik S, Jamroz M. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015;43:W419–24.CrossRefPubMedPubMedCentral
90.
go back to reference Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. 2016;32:3676–8.PubMed Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. 2016;32:3676–8.PubMed
91.
go back to reference Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990;4:155–61.CrossRefPubMed Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990;4:155–61.CrossRefPubMed
92.
go back to reference Nissler K, Rommerskirch W, Wiederanders B, Wenz I, Maubach G, Kreusch S, et al. An evolutionarily conserved tripartite tryptophan motif stabilizes the prodomains of cathepsin L-like cysteine proteases. Eur J Biochem. 2003;267:2965–72. Nissler K, Rommerskirch W, Wiederanders B, Wenz I, Maubach G, Kreusch S, et al. An evolutionarily conserved tripartite tryptophan motif stabilizes the prodomains of cathepsin L-like cysteine proteases. Eur J Biochem. 2003;267:2965–72.
93.
go back to reference De Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34:W362–5.CrossRefPubMedPubMedCentral De Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34:W362–5.CrossRefPubMedPubMedCentral
94.
go back to reference Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Falquet L. MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res. 2004;32:W332–5.CrossRefPubMedPubMedCentral Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Falquet L. MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res. 2004;32:W332–5.CrossRefPubMedPubMedCentral
95.
go back to reference Sundararaj S, Singh D, Saxena AK, Vashisht K, Sijwali PS, Dixit R, et al. The ionic and hydrophobic interactions are required for the auto activation of cysteine proteases of Plasmodium falciparum. PLoS ONE. 2012;7:e47227.CrossRefPubMedPubMedCentral Sundararaj S, Singh D, Saxena AK, Vashisht K, Sijwali PS, Dixit R, et al. The ionic and hydrophobic interactions are required for the auto activation of cysteine proteases of Plasmodium falciparum. PLoS ONE. 2012;7:e47227.CrossRefPubMedPubMedCentral
96.
go back to reference Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–8.CrossRefPubMed Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–8.CrossRefPubMed
97.
go back to reference Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future? J Med Chem. 2018;61:1382–414.CrossRefPubMed Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future? J Med Chem. 2018;61:1382–414.CrossRefPubMed
98.
go back to reference Mehta D, Anand P, Kumar V, Joshi A, Mathur D, Singh S, et al. ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database. 2014;2014:bau051.CrossRefPubMedPubMedCentral Mehta D, Anand P, Kumar V, Joshi A, Mathur D, Singh S, et al. ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database. 2014;2014:bau051.CrossRefPubMedPubMedCentral
99.
go back to reference Rizzi L, Sundararaman S, Cendic K, Vaiana N, Korde R, Sinha D, et al. Design and synthesis of protein-protein interaction mimics as Plasmodium falciparum cysteine protease, falcipain-2 inhibitors. Eur J Med Chem. 2011;46:2083–90.CrossRefPubMed Rizzi L, Sundararaman S, Cendic K, Vaiana N, Korde R, Sinha D, et al. Design and synthesis of protein-protein interaction mimics as Plasmodium falciparum cysteine protease, falcipain-2 inhibitors. Eur J Med Chem. 2011;46:2083–90.CrossRefPubMed
100.
go back to reference Korde R, Bhardwaj A, Singh R, Srivastava A, Chauhan VS, Bhatnagar RK, et al. A prodomain peptide of Plasmodium falciparum cysteine protease (falcipain-2) inhibits malaria parasite development. J Med Chem. 2008;51:3116–23.CrossRefPubMed Korde R, Bhardwaj A, Singh R, Srivastava A, Chauhan VS, Bhatnagar RK, et al. A prodomain peptide of Plasmodium falciparum cysteine protease (falcipain-2) inhibits malaria parasite development. J Med Chem. 2008;51:3116–23.CrossRefPubMed
101.
go back to reference Pandey KC, Barkan DT, Sali A, Rosenthal PJ. Regulatory elements within the prodomain of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. PLoS ONE. 2009;4:e5694.CrossRefPubMedPubMedCentral Pandey KC, Barkan DT, Sali A, Rosenthal PJ. Regulatory elements within the prodomain of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. PLoS ONE. 2009;4:e5694.CrossRefPubMedPubMedCentral
102.
go back to reference Farias SL, Gazarini ML, Melo RL, Hirata IY, Juliano MA, Juliano L, et al. Cysteine-protease activity elicited by Ca2+ stimulus in Plasmodium. Mol Biochem Parasitol. 2005;141:71–9.CrossRefPubMed Farias SL, Gazarini ML, Melo RL, Hirata IY, Juliano MA, Juliano L, et al. Cysteine-protease activity elicited by Ca2+ stimulus in Plasmodium. Mol Biochem Parasitol. 2005;141:71–9.CrossRefPubMed
Metadata
Title
Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design
Authors
Thommas Mutemi Musyoka
Joyce Njoki Njuguna
Özlem Tastan Bishop
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Plasmodia
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2790-2

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.