Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Fipronil and ivermectin treatment of cattle reduced the survival and ovarian development of field-collected Anopheles albimanus in a pilot trial conducted in northern Belize

Authors: Staci M. Dreyer, Donovan Leiva, Marla Magaña, Marie Pott, Jonathan Kay, Alvaro Cruz, Nicole L. Achee, John P. Grieco, Jefferson A. Vaughan

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Most malaria vector control programmes rely on indoor residual spraying of insecticides and insecticide-treated bed nets. This is effective against vector species that feed indoors at night and rest inside the house afterwards. In Central America, malaria vectors have different behaviours and are typically exophagic (i.e., bite outdoors), exophilic (i.e., remain outdoors after feeding), and zoophagic (i.e., as likely to feed on non-humans as humans). Thus, malaria elimination in Central America may require additional tactics. This pilot study investigated whether commercially-available products used to treat livestock for ticks could also be used to kill and/or sterilize zoophagic malaria vectors that feed on treated cattle in Belize.

Methods

Cattle were treated with either a pour-on formulation of 1% fipronil (3 heifers) or injection of 1% ivemectin (1 heifer). Control heifers (n = 2) were left untreated. Field-collected Anopheles albimanus contained in screen-top cages were strapped onto cattle at 2, 5, 7, and 14 days after treatment. Mosquito mortality was monitored once a day for 4 successive days. Surviving mosquitoes were dissected to assess blood meal digestion and ovarian development.

Results

A total of 1078 female An. albimanus mosquitoes were fed and monitored for mortality. Both fipronil and ivermectin significantly reduced survivorship of An. albimanus for up to 7 days after treatment. By 14 days, efficacy had declined. The ivermectin treatment completely lost its effectiveness and even though the fipronil-treated heifers were still killing significantly more mosquitoes than the untreated heifers, the amount of mosquito killing had diminished greatly. Both treatments significantly reduced ovary development in mosquitoes fed on treated cattle for the duration of the 2-week trial.

Conclusions

Treatment of cattle in northern Belize with topical fipronil and injectable ivermectin had significant lethal and sublethal effects on wild An. albimanus females. These results suggest that efforts towards eliminating residual transmission of malaria by zoophagic vectors in Central America may benefit by the judicious, targeted treatment of livestock with mosquitocidal compounds, such as fipronil or ivermectin.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. p. 1–165. ISBN 978-92-4-156565-3. WHO. World malaria report 2018. Geneva: World Health Organization; 2018. p. 1–165. ISBN 978-92-4-156565-3.
2.
go back to reference Zimmerman RH. Ecology of malaria vectors in the Americas and future direction. Mem Inst Oswaldo Cruz. 1992;87(Suppl 3):371–83.CrossRef Zimmerman RH. Ecology of malaria vectors in the Americas and future direction. Mem Inst Oswaldo Cruz. 1992;87(Suppl 3):371–83.CrossRef
4.
go back to reference Chaccour CJ, Ngha’bi K, Abizanda G, Irigoyen Barrio A, Aldaz A, Okumu F, et al. Targeting cattle for malaria elimination: marked reduction of Anopheles arabiensis survival for over six months using a slow-release ivermectin implant formulation. Parasit Vectors. 2018;11:287.CrossRef Chaccour CJ, Ngha’bi K, Abizanda G, Irigoyen Barrio A, Aldaz A, Okumu F, et al. Targeting cattle for malaria elimination: marked reduction of Anopheles arabiensis survival for over six months using a slow-release ivermectin implant formulation. Parasit Vectors. 2018;11:287.CrossRef
5.
go back to reference Naz S, Maqbool A, Ahmad M, Anjum AA. Efficacy of ivermectin for control of zoophilic malaria vectors in Pakistan. Pak J Zool. 2013;45:1585–91. Naz S, Maqbool A, Ahmad M, Anjum AA. Efficacy of ivermectin for control of zoophilic malaria vectors in Pakistan. Pak J Zool. 2013;45:1585–91.
6.
go back to reference Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. 2015;14:351.CrossRef Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. 2015;14:351.CrossRef
7.
go back to reference Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:365.CrossRef Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:365.CrossRef
8.
go back to reference Chaccour CJ, Lines J, Whitty CJ. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. J Infect Dis. 2010;202:113–6.CrossRef Chaccour CJ, Lines J, Whitty CJ. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. J Infect Dis. 2010;202:113–6.CrossRef
9.
go back to reference Fritz ML, Siegert PY, Walker ED, Bayoh MN, Vulule JR, Miller JR. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.1. Ann Trop Med Parasitol. 2009;103:539–47.CrossRef Fritz ML, Siegert PY, Walker ED, Bayoh MN, Vulule JR, Miller JR. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.1. Ann Trop Med Parasitol. 2009;103:539–47.CrossRef
10.
go back to reference Fritz ML, Walker ED, Miller JR. Lethal and sublethal effects of avermectin/milbemycin parasiticides on the African malaria vector, Anopheles arabiensis. J Med Entomol. 2012;49:326–31.CrossRef Fritz ML, Walker ED, Miller JR. Lethal and sublethal effects of avermectin/milbemycin parasiticides on the African malaria vector, Anopheles arabiensis. J Med Entomol. 2012;49:326–31.CrossRef
11.
go back to reference Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, Marques da Silva I, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.CrossRef Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, Marques da Silva I, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.CrossRef
12.
go back to reference Kobylinski KC, Foy BD, Richardson JH. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae. Malar J. 2012;11:381.CrossRef Kobylinski KC, Foy BD, Richardson JH. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae. Malar J. 2012;11:381.CrossRef
13.
go back to reference Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Short report: ivermectin mass drug administration to humans disrupts malaria parasite transmission in Sengalese villages. Am J Trop Med Hyg. 2011;85:3–5.CrossRef Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Short report: ivermectin mass drug administration to humans disrupts malaria parasite transmission in Sengalese villages. Am J Trop Med Hyg. 2011;85:3–5.CrossRef
14.
go back to reference Kobylinski KC, Ubalee R, Ponlawat A, Nitatsukprasert C, Phasomkulsolsil S, Wattanakul T, et al. Ivermectin susceptibility and sporontocidal effect in Greater Mekong Subregion Anopheles. Malar J. 2017;16:280.CrossRef Kobylinski KC, Ubalee R, Ponlawat A, Nitatsukprasert C, Phasomkulsolsil S, Wattanakul T, et al. Ivermectin susceptibility and sporontocidal effect in Greater Mekong Subregion Anopheles. Malar J. 2017;16:280.CrossRef
15.
go back to reference Lyimo IN, Kessy ST, Mbina KF, Daraja AA, Mnyone LL. Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania. Malar J. 2017;16:239.CrossRef Lyimo IN, Kessy ST, Mbina KF, Daraja AA, Mnyone LL. Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania. Malar J. 2017;16:239.CrossRef
16.
go back to reference Gardner K, Meisch MV, Meek CL, Biven WS. Effects of ivermectin in canine blood on Anopheles quadrimaculatus, Aedes albopictus, and Culex salinarius. J Am Mosq Control Assoc. 1993;9:400–2.PubMed Gardner K, Meisch MV, Meek CL, Biven WS. Effects of ivermectin in canine blood on Anopheles quadrimaculatus, Aedes albopictus, and Culex salinarius. J Am Mosq Control Assoc. 1993;9:400–2.PubMed
17.
go back to reference Jones JW, Meisch MV, Meek CL, Bivin WS. Lethal effects of ivermectin on Anopheles quadrimaculatus. J Am Mosq Control Assoc. 1992;8:278–80.PubMed Jones JW, Meisch MV, Meek CL, Bivin WS. Lethal effects of ivermectin on Anopheles quadrimaculatus. J Am Mosq Control Assoc. 1992;8:278–80.PubMed
18.
go back to reference Kobylinski KC, Escobedo-Vargas KS, López-Sifuentes VM, Durand S, Smith ES, Baldeviano GC, et al. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi. Malar J. 2017;16:474.CrossRef Kobylinski KC, Escobedo-Vargas KS, López-Sifuentes VM, Durand S, Smith ES, Baldeviano GC, et al. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi. Malar J. 2017;16:474.CrossRef
19.
go back to reference Sampaio VS, Beltrán TP, Kobylinski KC, Melo GC, Lima JBP, Silva SGM, et al. Filling gaps on ivermectin knowledge: effects on the survival and reproduction of Anopheles aquasalis, a Latin American malaria vector. Malar J. 2016;15:491.CrossRef Sampaio VS, Beltrán TP, Kobylinski KC, Melo GC, Lima JBP, Silva SGM, et al. Filling gaps on ivermectin knowledge: effects on the survival and reproduction of Anopheles aquasalis, a Latin American malaria vector. Malar J. 2016;15:491.CrossRef
20.
go back to reference Poché RM, Garlapati R, Singh MI, Poché DM. Evaluation of fipronil oral dosing to cattle for control of adult and larval sand flies under controlled conditions. J Med Entomol. 2013;50:833–7.CrossRef Poché RM, Garlapati R, Singh MI, Poché DM. Evaluation of fipronil oral dosing to cattle for control of adult and larval sand flies under controlled conditions. J Med Entomol. 2013;50:833–7.CrossRef
21.
go back to reference Sawadogo B, Rayaisse JB, Adakal H, Kabre AT, Bauer B. Fipronil 1% pour-on: further studies of its effects against lab-reared Glossina palpalis gambiensis. Parasitol Res. 2017;116:2927–32.CrossRef Sawadogo B, Rayaisse JB, Adakal H, Kabre AT, Bauer B. Fipronil 1% pour-on: further studies of its effects against lab-reared Glossina palpalis gambiensis. Parasitol Res. 2017;116:2927–32.CrossRef
22.
go back to reference Wilkerson RC, Strickman D, Litwak TR. Illustrated key to the female anopheline mosquitoes of Central America and Mexico. J Am Mosq Control Assoc. 1990;6:7–34.PubMed Wilkerson RC, Strickman D, Litwak TR. Illustrated key to the female anopheline mosquitoes of Central America and Mexico. J Am Mosq Control Assoc. 1990;6:7–34.PubMed
23.
go back to reference Detinova TS. Determination of the physiological age of female Anopheles from the changes of the tracheal system of the ovaries (in Russian). Med Parazitol Parazitarn Bolezni. 1945;14:45–9. Detinova TS. Determination of the physiological age of female Anopheles from the changes of the tracheal system of the ovaries (in Russian). Med Parazitol Parazitarn Bolezni. 1945;14:45–9.
24.
go back to reference Beklemishev WN, Detinova TS, Polovodova VP. Determination of physiological age in anophelines and of age distribution in anopheline populations in the USSR. Bull World Health Organ. 1959;21:223–32.PubMedPubMedCentral Beklemishev WN, Detinova TS, Polovodova VP. Determination of physiological age in anophelines and of age distribution in anopheline populations in the USSR. Bull World Health Organ. 1959;21:223–32.PubMedPubMedCentral
25.
go back to reference Charlwood JD, Tomás E, Andegiorgish AK, Mihreteab S, LeClair C. ‘We like it wet’: a comparison between dissection techniques for the assessment of parity in Anopheles arabiensis and determination of sac stage in mosquitoes alive or dead on collection. Peer J. 2018;6:e5155.CrossRef Charlwood JD, Tomás E, Andegiorgish AK, Mihreteab S, LeClair C. ‘We like it wet’: a comparison between dissection techniques for the assessment of parity in Anopheles arabiensis and determination of sac stage in mosquitoes alive or dead on collection. Peer J. 2018;6:e5155.CrossRef
27.
go back to reference Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef
28.
go back to reference Dreyer SM, Morin KJ, Vaughan JA. Differential susceptibilities of Anopheles albimanus and Anopheles stephensi mosquitoes to ivermectin. Malar J. 2018;17:148.CrossRef Dreyer SM, Morin KJ, Vaughan JA. Differential susceptibilities of Anopheles albimanus and Anopheles stephensi mosquitoes to ivermectin. Malar J. 2018;17:148.CrossRef
29.
go back to reference Chaccour C, Barrio ÁI, Royo AGG, Urbistondo DM, Slater H, Hammann F, et al. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar J. 2015;14:102.CrossRef Chaccour C, Barrio ÁI, Royo AGG, Urbistondo DM, Slater H, Hammann F, et al. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar J. 2015;14:102.CrossRef
Metadata
Title
Fipronil and ivermectin treatment of cattle reduced the survival and ovarian development of field-collected Anopheles albimanus in a pilot trial conducted in northern Belize
Authors
Staci M. Dreyer
Donovan Leiva
Marla Magaña
Marie Pott
Jonathan Kay
Alvaro Cruz
Nicole L. Achee
John P. Grieco
Jefferson A. Vaughan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2932-6

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue