Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Filling gaps on ivermectin knowledge: effects on the survival and reproduction of Anopheles aquasalis, a Latin American malaria vector

Authors: Vanderson S. Sampaio, Tatiana P. Beltrán, Kevin C. Kobylinski, Gisely C. Melo, José B. P. Lima, Sara G. M. Silva, Íria C. Rodriguez, Henrique Silveira, Maria G. V. B. Guerra, Quique Bassat, Paulo F. P. Pimenta, Marcus V. G. Lacerda, Wuelton M. Monteiro

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Strategies designed to advance towards malaria elimination rely on the detection and treatment of infections, rather than fever, and the interruption of malaria transmission between mosquitoes and humans. Mass drug administration with anti-malarials directed at eliminating parasites in blood, either to entire populations or targeting only those with malaria infections, are considered useful strategies to progress towards malaria elimination, but may be insufficient if applied on their own. These strategies assume a closer contact with populations, so incorporating a vector control intervention tool to those approaches could significantly enhance their efficacy. Ivermectin, an endectocide drug efficacious against a range of Anopheles species, could be added to other drug-based interventions. Interestingly, ivermectin could also be useful to target outdoor feeding and resting vectors, something not possible with current vector control tools, such as impregnated bed nets or indoor residual spraying (IRS).

Results

Anopheles aquasalis susceptibility to ivermectin was assessed. In vivo assessments were performed in six volunteers, being three men and three women. The effect of ivermectin on reproductive fitness and mosquito survivorship using membrane feeding assay (MFA) and direct feeding assay (DFA) was assessed and compared. The ivermectin lethal concentration (LC) values were LC50 = 47.03 ng/ml [44.68–49.40], LC25 = 31.92 ng/ml [28.60–34.57] and LC5 = 18.28 ng/ml [14.51–21.45]. Ivermectin significantly reduced the survivorship of An. aquasalis blood-fed 4 h post-ingestion (X 2 [N = 880] = 328.16, p < 0.001), 2 days post-ingestion (DPI 2) (X 2 [N = 983] = 156.75, p < 0.001), DPI 7 (X 2 [N = 935] = 31.17, p < 0.001) and DPI 14 (X 2 [N = 898] = 38.63, p < 0.001) compared to the blood fed on the untreated control. The average number of oviposited eggs per female was significantly lower in LC5 group (22.44 [SD = 3.38]) than in control (34.70 [SD = 12.09]) (X 2 [N = 199] = 10.52, p < 0.001) as well as the egg hatch rate (LC5 = 74.76 [SD = 5.48]) (Control = 81.91 [SD = 5.92]) (X 2 [N = 124] = 64.24, p < 0.001). However, no differences were observed on the number of pupae that developed from larvae (Control = 34.19 [SD = 10.42) and group (LC5 = 33.33 [SD = 11.97]) (X 2 [N = 124] = 0.96, p > 0.05).

Conclusions

Ivermectin drug reduces mosquito survivorship when blood fed on volunteer blood from 4 h to 14 days post-ingestion controlling for volunteers’ gender. Ivermectin at mosquito sub-lethal concentrations (LC5) reduces fecundity and egg hatch rate but not the number of pupae that developed from larvae. DFA had significantly higher effects on mosquito survival compared to MFA. The findings are presented and discussed through the prism of malaria elimination in the Amazon region.
Literature
1.
go back to reference WHO. World Malaria Report 2015. Geneva: World Health Organization; 2015. WHO. World Malaria Report 2015. Geneva: World Health Organization; 2015.
2.
go back to reference World Health Organization Malaria Policy Advisory Committee and Secretariat. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2013 meeting. Malar J. 2013;12:456.CrossRef World Health Organization Malaria Policy Advisory Committee and Secretariat. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2013 meeting. Malar J. 2013;12:456.CrossRef
3.
go back to reference World Health Organization Malaria Policy Advisory Committee and Secretariat. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of sixth biannual meeting (September 2014). Malar J. 2015;14:107.CrossRef World Health Organization Malaria Policy Advisory Committee and Secretariat. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of sixth biannual meeting (September 2014). Malar J. 2015;14:107.CrossRef
4.
go back to reference The malERA Consultative group on diagnoses and diagnostics. A research agenda for malaria eradication: diagnoses and diagnostics. PLoS Med. 2011;8:e1000396.CrossRefPubMedCentral The malERA Consultative group on diagnoses and diagnostics. A research agenda for malaria eradication: diagnoses and diagnostics. PLoS Med. 2011;8:e1000396.CrossRefPubMedCentral
5.
go back to reference Sturrock HJW, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013;10:e1001467.CrossRefPubMedPubMedCentral Sturrock HJW, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013;10:e1001467.CrossRefPubMedPubMedCentral
6.
go back to reference Alonso PL, Besansky NJ, Burkot TR, Collins FH, Hemingway J, James AA, et al. A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRef Alonso PL, Besansky NJ, Burkot TR, Collins FH, Hemingway J, James AA, et al. A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRef
8.
go back to reference Hemingway J, Shretta R, Wells TNC, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.CrossRefPubMedPubMedCentral Hemingway J, Shretta R, Wells TNC, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.CrossRefPubMedPubMedCentral
9.
go back to reference Slater HC, Ross A, Ouédraogo AL, White LJ, Nguon C, Walker PGT, et al. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature. 2015;528:S94–101.CrossRefPubMed Slater HC, Ross A, Ouédraogo AL, White LJ, Nguon C, Walker PGT, et al. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature. 2015;528:S94–101.CrossRefPubMed
10.
go back to reference Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184.CrossRefPubMedPubMedCentral Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184.CrossRefPubMedPubMedCentral
11.
go back to reference Camargo LM, dal Colletto GM, Ferreira MU, Gurgel Sde M, Escobar AL, Marques A, et al. Hypoendemic malaria in Rondonia (Brazil, western Amazon region): seasonal variation and risk groups in an urban locality. Am J Trop Med Hyg. 1996;55:32–8.PubMed Camargo LM, dal Colletto GM, Ferreira MU, Gurgel Sde M, Escobar AL, Marques A, et al. Hypoendemic malaria in Rondonia (Brazil, western Amazon region): seasonal variation and risk groups in an urban locality. Am J Trop Med Hyg. 1996;55:32–8.PubMed
12.
go back to reference Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.CrossRefPubMedPubMedCentral Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.CrossRefPubMedPubMedCentral
13.
go back to reference Jones JW, Meisch MV, Meek CL, Bivin WS. Lethal effects of ivermectin on Anopheles quadrimaculatus. J Am Mosq Control Assoc. 1992;8:278–80.PubMed Jones JW, Meisch MV, Meek CL, Bivin WS. Lethal effects of ivermectin on Anopheles quadrimaculatus. J Am Mosq Control Assoc. 1992;8:278–80.PubMed
14.
go back to reference Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:e365.CrossRef Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:e365.CrossRef
15.
go back to reference Foley DH, Bryan JH, Lawrence GW. The potential of ivermectin to control the malaria vector Anopheles farauti. Trans R Soc Trop Med Hyg. 2000;94:625–8.CrossRefPubMed Foley DH, Bryan JH, Lawrence GW. The potential of ivermectin to control the malaria vector Anopheles farauti. Trans R Soc Trop Med Hyg. 2000;94:625–8.CrossRefPubMed
16.
go back to reference Bockarie MJ, Alexander ND, Hyun P, Dimber Z, Bockarie F, Ibam E, et al. Randomised community-based trial of annual single-dose diethylcarbamazine with or without ivermectin against Wuchereria bancrofti infection in human beings and mosquitoes. Lancet. 1998;351:162–8.CrossRefPubMed Bockarie MJ, Alexander ND, Hyun P, Dimber Z, Bockarie F, Ibam E, et al. Randomised community-based trial of annual single-dose diethylcarbamazine with or without ivermectin against Wuchereria bancrofti infection in human beings and mosquitoes. Lancet. 1998;351:162–8.CrossRefPubMed
17.
go back to reference Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, da Silva IM, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.CrossRefPubMedPubMedCentral Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, da Silva IM, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.CrossRefPubMedPubMedCentral
18.
go back to reference Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am J Trop Med Hyg. 2011;85:3–5.CrossRefPubMedPubMedCentral Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am J Trop Med Hyg. 2011;85:3–5.CrossRefPubMedPubMedCentral
19.
go back to reference Butters MP, Kobylinski KC, Deus KM, da Silva IM, Gray M, Sylla M, et al. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae. Acta Trop. 2012;121:34–43.CrossRefPubMed Butters MP, Kobylinski KC, Deus KM, da Silva IM, Gray M, Sylla M, et al. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae. Acta Trop. 2012;121:34–43.CrossRefPubMed
20.
21.
go back to reference Chaccour CJ, Kobylinski KC, Bassat Q, Bousema T, Drakeley C, Alonso P, et al. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J. 2013;12:153.CrossRefPubMedPubMedCentral Chaccour CJ, Kobylinski KC, Bassat Q, Bousema T, Drakeley C, Alonso P, et al. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J. 2013;12:153.CrossRefPubMedPubMedCentral
22.
go back to reference Chaccour C, Killeen GF. Mind the gap: residual malaria transmission, veterinary endectocides and livestock as targets for malaria vector control. Malar J. 2016;15:24.CrossRefPubMedPubMedCentral Chaccour C, Killeen GF. Mind the gap: residual malaria transmission, veterinary endectocides and livestock as targets for malaria vector control. Malar J. 2016;15:24.CrossRefPubMedPubMedCentral
23.
go back to reference Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J. 2014;13:417.CrossRefPubMedPubMedCentral Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J. 2014;13:417.CrossRefPubMedPubMedCentral
24.
go back to reference Slater HC, Walker PGT, Bousema T, Okell LC, Ghani AC. The potential impact of adding Ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210:1972–80.CrossRefPubMed Slater HC, Walker PGT, Bousema T, Okell LC, Ghani AC. The potential impact of adding Ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210:1972–80.CrossRefPubMed
25.
go back to reference Banic DM, Calvao-Brito RH, Marchon-Silva V, Schuertez JC, de Lima Pinheiro LR, da Costa Alves M, et al. Impact of 3 years ivermectin treatment on onchocerciasis in Yanomami communities in the Brazilian Amazon. Acta Trop. 2009;112:125–30.CrossRefPubMed Banic DM, Calvao-Brito RH, Marchon-Silva V, Schuertez JC, de Lima Pinheiro LR, da Costa Alves M, et al. Impact of 3 years ivermectin treatment on onchocerciasis in Yanomami communities in the Brazilian Amazon. Acta Trop. 2009;112:125–30.CrossRefPubMed
26.
go back to reference Progress toward elimination of onchocerciasis in the Americas—1993–2012. MMWR. 2013;62:405–8. Progress toward elimination of onchocerciasis in the Americas—1993–2012. MMWR. 2013;62:405–8.
27.
go back to reference Chaccour CJ, Rabinovich NR, Slater H, Canavati SE, Bousema T, Lacerda M, et al. Establishment of the ivermectin research for malaria elimination network: updating the research agenda. Malar J. 2015;14:243.CrossRefPubMedPubMedCentral Chaccour CJ, Rabinovich NR, Slater H, Canavati SE, Bousema T, Lacerda M, et al. Establishment of the ivermectin research for malaria elimination network: updating the research agenda. Malar J. 2015;14:243.CrossRefPubMedPubMedCentral
28.
go back to reference Seaman JA, Alout H, Meyers JI, Stenglein MD, Dabiré RK, Lozano-Fuentes S, et al. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genom. 2015;16:797.CrossRef Seaman JA, Alout H, Meyers JI, Stenglein MD, Dabiré RK, Lozano-Fuentes S, et al. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genom. 2015;16:797.CrossRef
29.
go back to reference Bastiaens GJH, Vangemert GJ, Hooghof J, Lindsay SW, Drakeley C, Churcher TS, et al. Duration of the mosquitocidal effect of ivermectin. Malar J. 2012;3:417. Bastiaens GJH, Vangemert GJ, Hooghof J, Lindsay SW, Drakeley C, Churcher TS, et al. Duration of the mosquitocidal effect of ivermectin. Malar J. 2012;3:417.
30.
go back to reference Berti J, Zimmerman R, Amarista J. Adult abundance, biting behavior and parity of Anopheles aquasalis, Curry 1932 in two malarious areas of Sucre State, Venezuela. Mem Inst Oswaldo Cruz. 1993;88:363–9.CrossRefPubMed Berti J, Zimmerman R, Amarista J. Adult abundance, biting behavior and parity of Anopheles aquasalis, Curry 1932 in two malarious areas of Sucre State, Venezuela. Mem Inst Oswaldo Cruz. 1993;88:363–9.CrossRefPubMed
31.
go back to reference Póvoa MM, Conn JE, Schlichting CD, Amaral JCOF, Segura MNO, Da Silva ANM, et al. Malaria vectors, epidemiology, and the re-emergence of Anopheles darlingi in Belém, Pará, Brazil. J Med Entomol. 2003;40:379–86.CrossRefPubMed Póvoa MM, Conn JE, Schlichting CD, Amaral JCOF, Segura MNO, Da Silva ANM, et al. Malaria vectors, epidemiology, and the re-emergence of Anopheles darlingi in Belém, Pará, Brazil. J Med Entomol. 2003;40:379–86.CrossRefPubMed
32.
go back to reference Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, et al. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz. 2015;110:23–47.CrossRefPubMedPubMedCentral Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, et al. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz. 2015;110:23–47.CrossRefPubMedPubMedCentral
33.
go back to reference Flores-Mendoza C, Cunha RA, Rocha DS, Lourenço-de-Oliveira R. Determinação das fontes alimentares de Anopheles aquasalis (Diptera: Culicidae) no Estado do Rio de Janeiro, Brasil, pelo teste de precipitina. Rev Saude Publica. 1996;30:129–34.CrossRefPubMed Flores-Mendoza C, Cunha RA, Rocha DS, Lourenço-de-Oliveira R. Determinação das fontes alimentares de Anopheles aquasalis (Diptera: Culicidae) no Estado do Rio de Janeiro, Brasil, pelo teste de precipitina. Rev Saude Publica. 1996;30:129–34.CrossRefPubMed
34.
go back to reference Lourenço-de-Oliveira R, Heyden R. Alguns aspectos da ecologia dos mosquitos (Diptera: Culicidae) de uma área de planície (granjas Calábria) em Jacarepaguá, Rio de Janeiro: IV. Preferências alimentares quanto ao hospedeiro e freqüência domiciliar. Mem Inst Oswaldo Cruz. 1986;81:15–27.CrossRef Lourenço-de-Oliveira R, Heyden R. Alguns aspectos da ecologia dos mosquitos (Diptera: Culicidae) de uma área de planície (granjas Calábria) em Jacarepaguá, Rio de Janeiro: IV. Preferências alimentares quanto ao hospedeiro e freqüência domiciliar. Mem Inst Oswaldo Cruz. 1986;81:15–27.CrossRef
35.
go back to reference Xavier MM, Rebêlo JM. Species of Anopheles (Culicidae, Anophelinae) in a malaria-endemic area, Maranhão, Brazil (in Portuguese). Rev Saúde Pública. 1999;33:535–41.CrossRefPubMed Xavier MM, Rebêlo JM. Species of Anopheles (Culicidae, Anophelinae) in a malaria-endemic area, Maranhão, Brazil (in Portuguese). Rev Saúde Pública. 1999;33:535–41.CrossRefPubMed
36.
go back to reference Grillet ME. Factors associated with distribution of Anopheles aquasalis and Anopheles oswaldoi (Diptera: Culicidae) in a malarious area, Northeastern Venezuela. J Med Entomol. 2000;37:231–8.CrossRefPubMed Grillet ME. Factors associated with distribution of Anopheles aquasalis and Anopheles oswaldoi (Diptera: Culicidae) in a malarious area, Northeastern Venezuela. J Med Entomol. 2000;37:231–8.CrossRefPubMed
37.
go back to reference Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:72.CrossRefPubMedPubMedCentral Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:72.CrossRefPubMedPubMedCentral
38.
go back to reference Senior White RA. Studies on the bionomics of Anopheles aquasalis Curry, 1932. Part III. Indian J Malariol. 1952;6:29–72.PubMed Senior White RA. Studies on the bionomics of Anopheles aquasalis Curry, 1932. Part III. Indian J Malariol. 1952;6:29–72.PubMed
39.
go back to reference Abbott WS. A method of computing the effectiveness of an insecticide 1925. J Am Mosq Control Assoc. 1987;3:302–3.PubMed Abbott WS. A method of computing the effectiveness of an insecticide 1925. J Am Mosq Control Assoc. 1987;3:302–3.PubMed
40.
go back to reference Elkassaby MH. Ivermectin uptake and distribution in the plasma and tissue of Sudanese and Mexican patients infected with Onchocerca volvulus. Trop Med Parasitol. 1991;42:79–81.PubMed Elkassaby MH. Ivermectin uptake and distribution in the plasma and tissue of Sudanese and Mexican patients infected with Onchocerca volvulus. Trop Med Parasitol. 1991;42:79–81.PubMed
41.
go back to reference Na-Bangchang K, Kietinun S, Pawa KK, Hanpitakpong W, Na-Bangchang C, Lazdins J. Assessments of pharmacokinetic drug interactions and tolerability of albendazole, praziquantel and ivermectin combinations. Trans R Soc Trop Med Hyg. 2006;100:335–45.CrossRefPubMed Na-Bangchang K, Kietinun S, Pawa KK, Hanpitakpong W, Na-Bangchang C, Lazdins J. Assessments of pharmacokinetic drug interactions and tolerability of albendazole, praziquantel and ivermectin combinations. Trans R Soc Trop Med Hyg. 2006;100:335–45.CrossRefPubMed
42.
go back to reference Baraka OZ, Mahmoud BM, Marschke CK, Geary TG, Homeida MMA, Williams JF. Ivermectin distribution in the plasma and tissues of patients infected with Onchocerca volvulus. Eur J Clin Pharmacol. 1996;50:407–10.CrossRefPubMed Baraka OZ, Mahmoud BM, Marschke CK, Geary TG, Homeida MMA, Williams JF. Ivermectin distribution in the plasma and tissues of patients infected with Onchocerca volvulus. Eur J Clin Pharmacol. 1996;50:407–10.CrossRefPubMed
43.
go back to reference Ouédraogo AAL, Bastiaens GJH, Tiono AB, Guelbéogo WM, Kobylinski KC, Ouédraogo AAL, et al. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis. 2015;60:357–65.CrossRefPubMed Ouédraogo AAL, Bastiaens GJH, Tiono AB, Guelbéogo WM, Kobylinski KC, Ouédraogo AAL, et al. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis. 2015;60:357–65.CrossRefPubMed
44.
go back to reference Gardner K, Meisch MV, Meek CL, Biven WS. Effects of ivermectin in canine blood on Anopheles quadrimaculatus, Aedes albopictus and Culex salinarius. J Am Mosq Control Assoc. 1993;9:400–2.PubMed Gardner K, Meisch MV, Meek CL, Biven WS. Effects of ivermectin in canine blood on Anopheles quadrimaculatus, Aedes albopictus and Culex salinarius. J Am Mosq Control Assoc. 1993;9:400–2.PubMed
45.
go back to reference Pooda HS, Rayaisse J-B, de Hien DF, Lefèvre T, Yerbanga SR, Bengaly Z, et al. Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria. Malar J. 2014;13(Suppl 1):496. Pooda HS, Rayaisse J-B, de Hien DF, Lefèvre T, Yerbanga SR, Bengaly Z, et al. Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria. Malar J. 2014;13(Suppl 1):496.
46.
go back to reference Fritz ML, Siegert PY, Walker ED, Bayoh MN, Vulule JR, Miller JR. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.l. Ann Trop Med Parasitol. 2009;103:539–47.CrossRefPubMed Fritz ML, Siegert PY, Walker ED, Bayoh MN, Vulule JR, Miller JR. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.l. Ann Trop Med Parasitol. 2009;103:539–47.CrossRefPubMed
47.
go back to reference Derua YA, Kisinza WN, Simonsen PE. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2015;8:130.CrossRefPubMedPubMedCentral Derua YA, Kisinza WN, Simonsen PE. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2015;8:130.CrossRefPubMedPubMedCentral
Metadata
Title
Filling gaps on ivermectin knowledge: effects on the survival and reproduction of Anopheles aquasalis, a Latin American malaria vector
Authors
Vanderson S. Sampaio
Tatiana P. Beltrán
Kevin C. Kobylinski
Gisely C. Melo
José B. P. Lima
Sara G. M. Silva
Íria C. Rodriguez
Henrique Silveira
Maria G. V. B. Guerra
Quique Bassat
Paulo F. P. Pimenta
Marcus V. G. Lacerda
Wuelton M. Monteiro
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1540-y

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue