Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Comparison of two adult mosquito sampling methods with human landing catches in south-central Ethiopia

Authors: Oljira Kenea, Meshesha Balkew, Habte Tekie, Teshome Gebre-Michael, Wakgari Deressa, Eskindir Loha, Bernt Lindtjørn, Hans J. Overgaard

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

The human landing catch (HLC) is the standard reference method for measuring human exposure to mosquito bites. However, HLC is labour-intensive, exposes collectors to infectious mosquito bites and is subjected to collector bias. These necessitate local calibration and application of alternative methods. This study was undertaken to determine the relative sampling efficiency (RSE) of light traps with or without yeast-produced carbon dioxide bait vs. HLC in south-central Ethiopia.

Methods

The experiment was conducted for 39 nights in a 3 × 3 Latin square randomized design with Anopheles arabiensis as the target species in the period between July and November 2014 in Edo Kontola village, south-central Ethiopia. Center for Disease Control and Prevention light trap catches (LTC) and yeast-generated carbon dioxide-baited light trap catches (CB-LTC) were each evaluated against HLC. The total nightly mosquito catches for each Anopheles species in either method was compared with HLC by Pearson correlation and simple linear regression analysis on log-transformed [log10(x + 1)] values. To test if the RSE of each alternative method was affected by mosquito density, the ratio of the number of mosquitoes in each method to the number of mosquitoes in HLC was plotted against the average mosquito abundance.

Results

Overall, 7606 Anopheles females were collected by the three sampling methods. Among these 5228 (68.7%) were Anopheles ziemanni, 1153 (15.2%) An. arabiensis, 883 (11.6%) Anopheles funestus s.l., and 342 (4.5%) Anopheles pharoensis. HLC yielded 3392 (44.6%), CB-LTC 2150 (28.3%), and LTC 2064 (27.1%) Anopheles females. The RSEs of LTC and HLC for An. arabiensis were significantly correlated (p < 0.001) and density independent (p = 0.65). However, for outdoor collection of the same species, RSEs of LTC and CB-LTC were density dependent (p < 0.001). It was estimated that on average, indoor LTC and CB-LTC each caught 0.35 and 0.44 times that of indoor HLC for An. arabiensis respectively.

Conclusions

Results showed that HLC was the most efficient method for sampling An. arabiensis. LTC can be used for large-scale indoor An. arabiensis surveillance and monitoring when it is difficult to use HLC. CB-LTC does not substantially improve sampling of this major vector compared to LTC in this setting.
Trial registration PACTR201411000882128 (retrospectively registered 8 September, 2014)
Literature
1.
go back to reference WHO: Control of residual malaria parasite transmission: Guidance note. Geneva: World Health Organization; 2014. WHO: Control of residual malaria parasite transmission: Guidance note. Geneva: World Health Organization; 2014.
2.
go back to reference Lines JD, Curtis CF, Wilkes TJ, Njunwa KJ. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res. 1991;81:77–84.CrossRef Lines JD, Curtis CF, Wilkes TJ, Njunwa KJ. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res. 1991;81:77–84.CrossRef
3.
go back to reference Wong J, Bayoh N, Olang G, Killeen GF, Hamel MJ, Vulule JM, et al. Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya. Malar J. 2013;12:143.CrossRefPubMedPubMedCentral Wong J, Bayoh N, Olang G, Killeen GF, Hamel MJ, Vulule JM, et al. Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya. Malar J. 2013;12:143.CrossRefPubMedPubMedCentral
4.
go back to reference Costantini C, Sagnon NF, Sanogo E, Merzagora L, Coluzzi M. Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res. 1998;88:503–11.CrossRef Costantini C, Sagnon NF, Sanogo E, Merzagora L, Coluzzi M. Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res. 1998;88:503–11.CrossRef
5.
go back to reference WHO: Manual on practical entomology in malaria part-I: vector bionomics and organization of anti-malaria activities. Geneva: World Health Organization; 1975. WHO: Manual on practical entomology in malaria part-I: vector bionomics and organization of anti-malaria activities. Geneva: World Health Organization; 1975.
6.
go back to reference Beier JC, Killeen G, Githure JI. Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61:109–13.PubMed Beier JC, Killeen G, Githure JI. Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61:109–13.PubMed
7.
go back to reference Lima JBP, Rosa-Freitas MG, Rodovalho CM, Santos F, Oliveira RL. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches?—a review. Mem Inst Oswaldo Cruz. 2014;109:685–705.CrossRefPubMedPubMedCentral Lima JBP, Rosa-Freitas MG, Rodovalho CM, Santos F, Oliveira RL. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches?—a review. Mem Inst Oswaldo Cruz. 2014;109:685–705.CrossRefPubMedPubMedCentral
8.
go back to reference Briët OJT, Huho BJ, Gimnig JE, Bayoh N, Seyoum A, Sikaala CH, et al. Applications and limitations of centers for disease control and prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches. Malar J. 2015;14:247.CrossRefPubMedPubMedCentral Briët OJT, Huho BJ, Gimnig JE, Bayoh N, Seyoum A, Sikaala CH, et al. Applications and limitations of centers for disease control and prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches. Malar J. 2015;14:247.CrossRefPubMedPubMedCentral
9.
go back to reference Sudia WD, Chamberlain RW. Battery operated light trap, an improved model. Mosq News. 1962;22:126–9. Sudia WD, Chamberlain RW. Battery operated light trap, an improved model. Mosq News. 1962;22:126–9.
10.
go back to reference Mbogo CNM, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma JH, et al. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc. 1993;9:260–3.PubMed Mbogo CNM, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma JH, et al. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc. 1993;9:260–3.PubMed
11.
go back to reference Davis JR, Hall T, Chee EM, Majala A, Minjas J, Shiff CJ. Comparison of sampling of anopheline mosquitoes by light trap and human-bait collections indoor in Bagamoyo, Tanzania. Med Vet Entomol. 1995;9:249–55.CrossRefPubMed Davis JR, Hall T, Chee EM, Majala A, Minjas J, Shiff CJ. Comparison of sampling of anopheline mosquitoes by light trap and human-bait collections indoor in Bagamoyo, Tanzania. Med Vet Entomol. 1995;9:249–55.CrossRefPubMed
12.
go back to reference Mathenge EM, Omweri GO, Irungu LW, Ndegwa PN, Walczak E, Smith TA, et al. Comparative field evaluation of the Mbita trap, CDC light trap and the human landing catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg. 2004;70:33–7.PubMed Mathenge EM, Omweri GO, Irungu LW, Ndegwa PN, Walczak E, Smith TA, et al. Comparative field evaluation of the Mbita trap, CDC light trap and the human landing catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg. 2004;70:33–7.PubMed
13.
go back to reference Mathenge EM, Misiani GO, Oulo DO, Irungu LW, Ndegwa PN, Smith TA, et al. Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation scheme in western Kenya. Malar J. 2005;4:7.CrossRefPubMedPubMedCentral Mathenge EM, Misiani GO, Oulo DO, Irungu LW, Ndegwa PN, Smith TA, et al. Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation scheme in western Kenya. Malar J. 2005;4:7.CrossRefPubMedPubMedCentral
14.
go back to reference Govella NJ, Chaki PP, Geissbühler Y, Kannady K, Okumu FO, Charlwood JD, et al. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar J. 2009;8:157.CrossRefPubMedPubMedCentral Govella NJ, Chaki PP, Geissbühler Y, Kannady K, Okumu FO, Charlwood JD, et al. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar J. 2009;8:157.CrossRefPubMedPubMedCentral
15.
go back to reference Govella NJ, Chaki PP, Mpangile JM, Killeen GF. Monitoring mosquitoes in urban Dar es Salaam: evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors. 2011;4:40.CrossRefPubMedPubMedCentral Govella NJ, Chaki PP, Mpangile JM, Killeen GF. Monitoring mosquitoes in urban Dar es Salaam: evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors. 2011;4:40.CrossRefPubMedPubMedCentral
16.
go back to reference Sikaala CH, Killeen GF, Chanda J, Chinula D, Miller JM, Russell TL, et al. Evaluation of alternative mosquito sampling methods for malaria vectors in lowland South–East Zambia. Parasit Vectors. 2013;6:91.CrossRefPubMedPubMedCentral Sikaala CH, Killeen GF, Chanda J, Chinula D, Miller JM, Russell TL, et al. Evaluation of alternative mosquito sampling methods for malaria vectors in lowland South–East Zambia. Parasit Vectors. 2013;6:91.CrossRefPubMedPubMedCentral
17.
go back to reference Krajacich BJ, Slade JR, Mulligan RT, Labrecque B, Kobylinski KC, Gray M, et al. Design and testing of a novel, protective human-baited tent trap for the collection of anthropophilic disease vector. J Med Entomol. 2014;51:253–63.CrossRefPubMedPubMedCentral Krajacich BJ, Slade JR, Mulligan RT, Labrecque B, Kobylinski KC, Gray M, et al. Design and testing of a novel, protective human-baited tent trap for the collection of anthropophilic disease vector. J Med Entomol. 2014;51:253–63.CrossRefPubMedPubMedCentral
18.
go back to reference Dia I, Diallo D, Duchemin JB, Ba Y, Konate L, Costantini C, et al. Comparisons of human-landing catches and odor-baited entry traps for sampling malaria vectors in Senegal. J Med Entomol. 2005;42:104–9.CrossRefPubMed Dia I, Diallo D, Duchemin JB, Ba Y, Konate L, Costantini C, et al. Comparisons of human-landing catches and odor-baited entry traps for sampling malaria vectors in Senegal. J Med Entomol. 2005;42:104–9.CrossRefPubMed
20.
go back to reference Maliti DV, Govella NJ, Killeen GF, Mirzai N, Johnson PCD, Kreppel K, et al. Development and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling host-seeking malaria vectors. Malar J. 2015;14:502.CrossRefPubMedPubMedCentral Maliti DV, Govella NJ, Killeen GF, Mirzai N, Johnson PCD, Kreppel K, et al. Development and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling host-seeking malaria vectors. Malar J. 2015;14:502.CrossRefPubMedPubMedCentral
21.
go back to reference Govella NJ, Maliti DV, Mlwale AT, Masallu JP, Mirzai N, Johnson PCD, et al. An improved mosquito electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feeding behaviours as determined by human landing catch. Malar J. 2016;15:465.CrossRefPubMedPubMedCentral Govella NJ, Maliti DV, Mlwale AT, Masallu JP, Mirzai N, Johnson PCD, et al. An improved mosquito electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feeding behaviours as determined by human landing catch. Malar J. 2016;15:465.CrossRefPubMedPubMedCentral
22.
go back to reference Jawara M, Smallegange RC, Jeffries D, Nwakanma DC, Awolola TS, Knols BGJ, et al. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in The Gambia. PLoS ONE. 2009;4:e8167.CrossRefPubMedPubMedCentral Jawara M, Smallegange RC, Jeffries D, Nwakanma DC, Awolola TS, Knols BGJ, et al. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in The Gambia. PLoS ONE. 2009;4:e8167.CrossRefPubMedPubMedCentral
23.
go back to reference Smallegange RC, Schmied WH, Van Roey KJ, Verhulst NO, Spitzen J, Mukabana WR, et al. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J. 2010;9:292.CrossRefPubMedPubMedCentral Smallegange RC, Schmied WH, Van Roey KJ, Verhulst NO, Spitzen J, Mukabana WR, et al. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J. 2010;9:292.CrossRefPubMedPubMedCentral
24.
go back to reference Saitoh Y, Hattori J, Chinone S, Nihei N, Tsuda Y, Kurahashi H, et al. Yeast generated CO2 as a convenient source of carbon dioxide for adult mosquito sampling. J Am Mosq Control Assoc. 2004;20:261–4.PubMed Saitoh Y, Hattori J, Chinone S, Nihei N, Tsuda Y, Kurahashi H, et al. Yeast generated CO2 as a convenient source of carbon dioxide for adult mosquito sampling. J Am Mosq Control Assoc. 2004;20:261–4.PubMed
25.
go back to reference Abose T, Ye-Ebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Re-Orientation and definition of the role of malaria vector control in Ethiopia; the epidemiology and control of malaria with special emphasis to the distribution, behavior and susceptibility to insecticides of anopheline vectors and chloroquine resistance in Ziway, Central Ethiopia and other areas. Addis Ababa; 1998. Abose T, Ye-Ebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Re-Orientation and definition of the role of malaria vector control in Ethiopia; the epidemiology and control of malaria with special emphasis to the distribution, behavior and susceptibility to insecticides of anopheline vectors and chloroquine resistance in Ziway, Central Ethiopia and other areas. Addis Ababa; 1998.
26.
go back to reference Deressa W, Loha E, Balkew M, Desalegne A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: study protocol for a cluster randomized controlled trial. Trials. 2016;17:20.CrossRefPubMedPubMedCentral Deressa W, Loha E, Balkew M, Desalegne A, Gari T, Kenea O, et al. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: study protocol for a cluster randomized controlled trial. Trials. 2016;17:20.CrossRefPubMedPubMedCentral
27.
go back to reference Fornadel CM, Norris LC, Norris DE. Centers for disease control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg. 2010;83:838–42.CrossRefPubMedPubMedCentral Fornadel CM, Norris LC, Norris DE. Centers for disease control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg. 2010;83:838–42.CrossRefPubMedPubMedCentral
28.
go back to reference Animut A, Balkew M, Gebre-Michael T, Lindtjørn B. Blood meal sources and entomological inoculation rates of a highland altitudinal transect in south-central Ethiopia. Malar J. 2013;12:76.CrossRefPubMedPubMedCentral Animut A, Balkew M, Gebre-Michael T, Lindtjørn B. Blood meal sources and entomological inoculation rates of a highland altitudinal transect in south-central Ethiopia. Malar J. 2013;12:76.CrossRefPubMedPubMedCentral
29.
go back to reference Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B. Entomological inoculation rates of Anopheles arabiensis in southwestern Ethiopia. Am J Trop Med Hyg. 2013;89:466–73.CrossRefPubMedPubMedCentral Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B. Entomological inoculation rates of Anopheles arabiensis in southwestern Ethiopia. Am J Trop Med Hyg. 2013;89:466–73.CrossRefPubMedPubMedCentral
30.
go back to reference Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors. 2016;9:527.CrossRefPubMedPubMedCentral Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors. 2016;9:527.CrossRefPubMedPubMedCentral
31.
go back to reference Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.CrossRefPubMedPubMedCentral Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.CrossRefPubMedPubMedCentral
32.
go back to reference Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara. S Afr Inst Med Res. 1987;55:143. Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara. S Afr Inst Med Res. 1987;55:143.
33.
go back to reference Beier JPP, Wirtz RA, Whitmire RE, Mugambi M, Hockmeyer WT. Field evaluation of an enzyme-linked immunosorbent assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya. Am J Trop Med Hyg. 1987;36:459–68.PubMed Beier JPP, Wirtz RA, Whitmire RE, Mugambi M, Hockmeyer WT. Field evaluation of an enzyme-linked immunosorbent assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya. Am J Trop Med Hyg. 1987;36:459–68.PubMed
34.
go back to reference Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. Statistician. 1983;32:307–17.CrossRef Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. Statistician. 1983;32:307–17.CrossRef
35.
go back to reference Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J. 2014;13:111.CrossRefPubMedPubMedCentral Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J. 2014;13:111.CrossRefPubMedPubMedCentral
36.
go back to reference Overgaard HJ, Saebo S, Reddy MR, Reddy VP, Abaga S, Matias A, et al. Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea. Malar J. 2012;11:56.CrossRefPubMedPubMedCentral Overgaard HJ, Saebo S, Reddy MR, Reddy VP, Abaga S, Matias A, et al. Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea. Malar J. 2012;11:56.CrossRefPubMedPubMedCentral
37.
go back to reference Coetzee M, Craig M, Sueur D. Distribution of Africa malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2004;16:74–7.CrossRef Coetzee M, Craig M, Sueur D. Distribution of Africa malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2004;16:74–7.CrossRef
38.
go back to reference Takken W, Verhulst LO. Host preferences of blood feeding mosquitoes. Annu Rev Entomol. 2013;48:433–53.CrossRef Takken W, Verhulst LO. Host preferences of blood feeding mosquitoes. Annu Rev Entomol. 2013;48:433–53.CrossRef
39.
go back to reference Kirby MJ, Green C, Milligan PM, Sismanidis C, Jasseh M, Conway DJ, et al. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia. Malar J. 2008;7:2.CrossRefPubMedPubMedCentral Kirby MJ, Green C, Milligan PM, Sismanidis C, Jasseh M, Conway DJ, et al. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia. Malar J. 2008;7:2.CrossRefPubMedPubMedCentral
40.
go back to reference Magbity EB, Lines JD, Marbiah MT, David K, Peterson E. How reliable are light traps in estimating biting rates of adult Anopheles gambiae s.l. (Diptera: Culicidae) in the presence of treated bed nets? Bull Entomol Res. 2002;92:71–6.CrossRefPubMed Magbity EB, Lines JD, Marbiah MT, David K, Peterson E. How reliable are light traps in estimating biting rates of adult Anopheles gambiae s.l. (Diptera: Culicidae) in the presence of treated bed nets? Bull Entomol Res. 2002;92:71–6.CrossRefPubMed
41.
go back to reference Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B. Zoophagic behaviour of anopheline mosquitoes in southwest Ethiopia: opportunity for malaria vector control. Parasit Vectors. 2015;8:645.CrossRefPubMedPubMedCentral Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B. Zoophagic behaviour of anopheline mosquitoes in southwest Ethiopia: opportunity for malaria vector control. Parasit Vectors. 2015;8:645.CrossRefPubMedPubMedCentral
43.
go back to reference Seyoum A, Balcha FM, Ali A, Gebre-Michael T. Impact of cattle keeping on human biting rate of anopheline mosquitoes and malaria transmission around Ziway, Ethiopia. East Afr Med J. 2002;79:485–90.PubMed Seyoum A, Balcha FM, Ali A, Gebre-Michael T. Impact of cattle keeping on human biting rate of anopheline mosquitoes and malaria transmission around Ziway, Ethiopia. East Afr Med J. 2002;79:485–90.PubMed
44.
go back to reference Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis : implications for vector control. Med Vet Entomol. 2006;20:425–37.CrossRefPubMed Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis : implications for vector control. Med Vet Entomol. 2006;20:425–37.CrossRefPubMed
45.
go back to reference Mboera LE. Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate. Tanzan J Health Res. 2005;7:117. Mboera LE. Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate. Tanzan J Health Res. 2005;7:117.
46.
go back to reference Hiwat H, Andriessen R, de Rijk M, Koenraadt CJM, Takken W. Carbon dioxide baited trap catches do not correlate with human landing collections of Anopheles aquasalis in Suriname. Mem Inst Oswaldo Cruz. 2011;106:360–4.CrossRefPubMed Hiwat H, Andriessen R, de Rijk M, Koenraadt CJM, Takken W. Carbon dioxide baited trap catches do not correlate with human landing collections of Anopheles aquasalis in Suriname. Mem Inst Oswaldo Cruz. 2011;106:360–4.CrossRefPubMed
47.
go back to reference Kibret S, Petros B, Boelee E, Tekie H. Entomological studies on the impact of a small-scale irrigation scheme on malaria transmission around Zeway, Ethiopia. Ethiop J Health Dev Res. 2010;32:418–38. Kibret S, Petros B, Boelee E, Tekie H. Entomological studies on the impact of a small-scale irrigation scheme on malaria transmission around Zeway, Ethiopia. Ethiop J Health Dev Res. 2010;32:418–38.
48.
go back to reference Dekker T, Takken W. Differential responses of mosquito sibling species Anopheles arabiensis and An.quadriannulatus to carbon dioxide, a man or a calf. Med Vet Entomol. 1998;12:136–40.CrossRefPubMed Dekker T, Takken W. Differential responses of mosquito sibling species Anopheles arabiensis and An.quadriannulatus to carbon dioxide, a man or a calf. Med Vet Entomol. 1998;12:136–40.CrossRefPubMed
Metadata
Title
Comparison of two adult mosquito sampling methods with human landing catches in south-central Ethiopia
Authors
Oljira Kenea
Meshesha Balkew
Habte Tekie
Teshome Gebre-Michael
Wakgari Deressa
Eskindir Loha
Bernt Lindtjørn
Hans J. Overgaard
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1668-9

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue