Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Malaria | Research

Comparison of malaria treatment outcome of generic and innovator’s anti-malarial drugs containing artemether–lumefantrine combination in the management of uncomplicated malaria amongst Tanzanian children

Authors: Manase Kilonzi, Omary Minzi, Ritah Mutagonda, Philip Sasi, Appolinary Kamuhabwa, Eleni Aklillu

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

In 2006, artemether–lumefantrine (ALU), specifically Coartem® (Novartis Pharma AG, Basel Switzerland), was approved as the first-line drug for treatment of uncomplicated malaria in Tanzania. Due to poor availability and affordability of the innovator’s product, the government of Tanzania in 2013 prequalified the use of generic anti-malarial drugs, whereby Artefan® (Ajanta, Pharma Ltd, India) was the first to be approved.

Methods

This was an equivalence prospective study that aimed to determine the effectiveness of anti-malarial generic Artefan® in comparison with innovator’s product Coartem®. Patients aged 6 to 59 months with uncomplicated malaria were recruited and randomized to either receive Artefan® or Coartem® as a control. Participants were required to revisit clinic five times as follow up to monitor treatment outcome as per World Health Organization recommendations. On each visit, thick and thin blood smears, dried blood spot (DBS), haemoglobin concentrations and auxiliary temperature were performed and documented.

Results

Out of 230 recruited participants, 200 met inclusion criteria and were randomized equally to receive Artefan® and Coartem®. The overall PCR uncorrected cure rate were 80% for Artefan® and 75% for Coartem® (p = 0.44). Adequate clinical and parasitological response were 82.1% for Artefan® and 74.7% for Coartem®, and there was no early treatment failure (ETF) observed in both arms of treatment. Both drugs showed excellent early parasite clearance, whereby no participants had peripheral parasitaemia on day 3. Late clinical failures (LCF) were 3.6% for Artefan® and 1.3% for Coartem® (p = 0.31), and late parasitological failure (LPF) were 15.4% for Artefan® and 22.7% for Coartem® (p = 0.32). Mean haemoglobin (g/dl) concentrations observed on day 28 were higher compared to day 0 for both drugs, although not statistically significant. Only one (1.3%) participant on Artefan® had temperature ≥ 37.5 °C on day 3.

Conclusion

The findings of this study indicate that both Artefan® and Coartem® are equivalent and effective in the management of uncomplicated malaria amongst children in the Coast part of Tanzania.
Literature
1.
go back to reference WHO. World malaria report 2017. Geneva: World Health Organization; 2017. WHO. World malaria report 2017. Geneva: World Health Organization; 2017.
2.
go back to reference USAID, CDC. U. S. President’s Malaria Initiative, Tanzania malaria operational plan 2017. Washington: USAID; 2017. p. 1–45. USAID, CDC. U. S. President’s Malaria Initiative, Tanzania malaria operational plan 2017. Washington: USAID; 2017. p. 1–45.
3.
go back to reference Barber BE, William T, Grigg MJ, Yeo TW, Anstey NM. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malar J. 2013;12:8.CrossRef Barber BE, William T, Grigg MJ, Yeo TW, Anstey NM. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malar J. 2013;12:8.CrossRef
4.
go back to reference Muhindo MK, Kakuru A, Jagannathan P, Talisuna A, Osilo E, Orukan F, et al. Early parasite clearance following artemisinin-based combination therapy among Ugandan children with uncomplicated Plasmodium falciparum malaria. Malar J. 2014;13:32.CrossRef Muhindo MK, Kakuru A, Jagannathan P, Talisuna A, Osilo E, Orukan F, et al. Early parasite clearance following artemisinin-based combination therapy among Ugandan children with uncomplicated Plasmodium falciparum malaria. Malar J. 2014;13:32.CrossRef
5.
go back to reference Stepniewska K, Ashley E, Lee SJ, Anstey N, Karen I, Binh TQ, et al. In vivo parasitological measures of artemisinin susceptibility. J Infect Dis. 2015;201:570–9.CrossRef Stepniewska K, Ashley E, Lee SJ, Anstey N, Karen I, Binh TQ, et al. In vivo parasitological measures of artemisinin susceptibility. J Infect Dis. 2015;201:570–9.CrossRef
6.
go back to reference Social welfare, NMCP-National Malaria Control Programme. National guidelines for diagnosis and treatment of malaria. Dar es Salaam; 2006. Social welfare, NMCP-National Malaria Control Programme. National guidelines for diagnosis and treatment of malaria. Dar es Salaam; 2006.
7.
go back to reference Verduin-Muttiganzi R, Verduin-Muttiganzi G. Assessment of the incidence of substandard drugs in developing countries. Trop Med Int Health. 1998;3:602.CrossRef Verduin-Muttiganzi R, Verduin-Muttiganzi G. Assessment of the incidence of substandard drugs in developing countries. Trop Med Int Health. 1998;3:602.CrossRef
8.
go back to reference Atemnkeng MA, De Cock K, Plaizier-Vercammen J. Quality control of active ingredients in artemisinin-derivative antimalarials within Kenya and DR Congo. Trop Med Int Health. 2007;12:68–74.PubMed Atemnkeng MA, De Cock K, Plaizier-Vercammen J. Quality control of active ingredients in artemisinin-derivative antimalarials within Kenya and DR Congo. Trop Med Int Health. 2007;12:68–74.PubMed
9.
go back to reference Flegg JA, Guerin PJ, White NJ, Stepniewska K. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339.CrossRef Flegg JA, Guerin PJ, White NJ, Stepniewska K. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339.CrossRef
10.
go back to reference Newton PN, McGready R, Fernandez F, Green MD, Sunjio M, Bruneton C, et al. Manslaughter by fake artesunate in Asia—will Africa be next? PLoS Med. 2006;3:e197.CrossRef Newton PN, McGready R, Fernandez F, Green MD, Sunjio M, Bruneton C, et al. Manslaughter by fake artesunate in Asia—will Africa be next? PLoS Med. 2006;3:e197.CrossRef
11.
go back to reference Minzi OMS, Marealle IA, Shekalaghe S, Juma O, Ngaimisi E, Chemba M, et al. Comparison of bioavailability between the most available generic tablet formulation containing artemether and lumefantrine on the Tanzanian market and the innovator’s product. Malar J. 2013;12:174.CrossRef Minzi OMS, Marealle IA, Shekalaghe S, Juma O, Ngaimisi E, Chemba M, et al. Comparison of bioavailability between the most available generic tablet formulation containing artemether and lumefantrine on the Tanzanian market and the innovator’s product. Malar J. 2013;12:174.CrossRef
12.
go back to reference Flight L, Julious SA. Practical guide to sample size calculations: non-inferiority and equivalence trials. Pharm Stat. 2016;15:80–9.CrossRef Flight L, Julious SA. Practical guide to sample size calculations: non-inferiority and equivalence trials. Pharm Stat. 2016;15:80–9.CrossRef
13.
go back to reference Ho W. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009. p. 90. Ho W. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009. p. 90.
14.
go back to reference Ministry of Health, Tanzania. Standard treatment guidelines and national essential medicines list, Tanzania mainland. Dar es Salaam: Ministry of Health; 2017. p. 36. Ministry of Health, Tanzania. Standard treatment guidelines and national essential medicines list, Tanzania mainland. Dar es Salaam: Ministry of Health; 2017. p. 36.
15.
go back to reference WHO. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization; 2003. WHO. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization; 2003.
16.
go back to reference Baird JK. Effectiveness of antimalarial drugs. N Engl J Med. 2005;352:1565–77.CrossRef Baird JK. Effectiveness of antimalarial drugs. N Engl J Med. 2005;352:1565–77.CrossRef
17.
go back to reference Minzi OM, Moshi MJ, Hipolite D, Massele AY, Tomson G, Ericsson O, et al. Evaluation of the quality of amodiaquine and sulphadoxine/pyrimethamine tablets sold by private wholesale pharmacies in Dar Es Salaam Tanzania. J Clin Pharm Ther. 2003;28:117–22.CrossRef Minzi OM, Moshi MJ, Hipolite D, Massele AY, Tomson G, Ericsson O, et al. Evaluation of the quality of amodiaquine and sulphadoxine/pyrimethamine tablets sold by private wholesale pharmacies in Dar Es Salaam Tanzania. J Clin Pharm Ther. 2003;28:117–22.CrossRef
18.
go back to reference Hebron Y, Tettey JNA, Pournamdari M, Watson DG. The chemical and pharmaceutical equivalence of sulphadoxine/pyrimethamine tablets sold on the Tanzanian market. J Clin Pharm Ther. 2005;30:575–81.CrossRef Hebron Y, Tettey JNA, Pournamdari M, Watson DG. The chemical and pharmaceutical equivalence of sulphadoxine/pyrimethamine tablets sold on the Tanzanian market. J Clin Pharm Ther. 2005;30:575–81.CrossRef
19.
go back to reference Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-isavadharm P, Smith B, et al. Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis. 2010;51:e82–9.CrossRef Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-isavadharm P, Smith B, et al. Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis. 2010;51:e82–9.CrossRef
20.
go back to reference Mekonnen SK, Medhin G, Berhe N, Clouse RM, Aseffa A. Efficacy of artemether–lumefantrine therapy for the treatment of uncomplicated Plasmodium falciparum malaria in Southwestern Ethiopia. Malar J. 2015;14:317.CrossRef Mekonnen SK, Medhin G, Berhe N, Clouse RM, Aseffa A. Efficacy of artemether–lumefantrine therapy for the treatment of uncomplicated Plasmodium falciparum malaria in Southwestern Ethiopia. Malar J. 2015;14:317.CrossRef
21.
go back to reference Kinfu G, Gebre-Selassie S, Fikrie N. Therapeutic efficacy of artemether–lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Northern Ethiopia. Malar Res Treat. 2012;2012:548710.PubMedPubMedCentral Kinfu G, Gebre-Selassie S, Fikrie N. Therapeutic efficacy of artemether–lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Northern Ethiopia. Malar Res Treat. 2012;2012:548710.PubMedPubMedCentral
22.
go back to reference Teklemariam M, Assefa A, Kassa M, Mohammed H, Mamo H. Therapeutic efficacy of artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria in a high-transmission area in northwest Ethiopia. PLoS ONE. 2017;12:e0176004.CrossRef Teklemariam M, Assefa A, Kassa M, Mohammed H, Mamo H. Therapeutic efficacy of artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria in a high-transmission area in northwest Ethiopia. PLoS ONE. 2017;12:e0176004.CrossRef
23.
go back to reference Assefa A, Kassa M, Tadese G, Mohamed H, Animut A, Mengesha T. Therapeutic efficacy of artemether/lumefantrine (Coartem®) against Plasmodium falciparum in Kersa, South West Ethiopia. Parasit Vectors. 2010;3:1.CrossRef Assefa A, Kassa M, Tadese G, Mohamed H, Animut A, Mengesha T. Therapeutic efficacy of artemether/lumefantrine (Coartem®) against Plasmodium falciparum in Kersa, South West Ethiopia. Parasit Vectors. 2010;3:1.CrossRef
24.
go back to reference Shankar AH. Nutritional modulation of malaria morbidity and mortality. J Infect Dis. 2000;182:S37–53.CrossRef Shankar AH. Nutritional modulation of malaria morbidity and mortality. J Infect Dis. 2000;182:S37–53.CrossRef
25.
go back to reference Genton B, Al-Yaman F, Ginny M, Taraika J, Alpers MP. Relation of anthropometry to malaria morbidity and immunity in Papua New Guinean children. Am J Clin Nutr. 1998;68:734–41.CrossRef Genton B, Al-Yaman F, Ginny M, Taraika J, Alpers MP. Relation of anthropometry to malaria morbidity and immunity in Papua New Guinean children. Am J Clin Nutr. 1998;68:734–41.CrossRef
26.
go back to reference Scrimshaw NS. Symposium: nutrition and infection, prologue and progress since 1968. Historical concepts of interactions, synergism and antagonism between nutrition and infection. J Nutr. 1968;2003(133):316–21. Scrimshaw NS. Symposium: nutrition and infection, prologue and progress since 1968. Historical concepts of interactions, synergism and antagonism between nutrition and infection. J Nutr. 1968;2003(133):316–21.
27.
go back to reference Almeida M, Alexandre A, Benzecry SG, Siqueira M, Vitor-silva S, Melo GC. The association between nutritional status and malaria in children from a rural community in the Amazonian region: a longitudinal study. PLoS Negl Trop Dis. 2015;9:e0003743.CrossRef Almeida M, Alexandre A, Benzecry SG, Siqueira M, Vitor-silva S, Melo GC. The association between nutritional status and malaria in children from a rural community in the Amazonian region: a longitudinal study. PLoS Negl Trop Dis. 2015;9:e0003743.CrossRef
28.
go back to reference Kotepui M, Phunphuech B, Phiwklam N, Chupeerach C, Duangmano S. Effect of malarial infection on haematological parameters in population near Thailand–Myanmar border. Malar J. 2014;13:218.CrossRef Kotepui M, Phunphuech B, Phiwklam N, Chupeerach C, Duangmano S. Effect of malarial infection on haematological parameters in population near Thailand–Myanmar border. Malar J. 2014;13:218.CrossRef
Metadata
Title
Comparison of malaria treatment outcome of generic and innovator’s anti-malarial drugs containing artemether–lumefantrine combination in the management of uncomplicated malaria amongst Tanzanian children
Authors
Manase Kilonzi
Omary Minzi
Ritah Mutagonda
Philip Sasi
Appolinary Kamuhabwa
Eleni Aklillu
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2769-z

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue