Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Opinion

The portfolio effect cushions mosquito populations and malaria transmission against vector control interventions

Authors: Gerry F. Killeen, Thomas E. Reed

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Portfolio effects were first described as a basis for mitigating against financial risk by diversifying investments. Distributing investment across several different assets can stabilize returns and reduce risks by statistical averaging of individual asset dynamics that often correlate weakly or negatively with each other. The same simple probability theory is equally applicable to complex ecosystems, in which biological and environmental diversity stabilizes ecosystems against natural and human-mediated perturbations. Given the fundamental limitations to how well the full complexity of ecosystem dynamics can be understood or anticipated, the portfolio effect concept provides a simple framework for more critical data interpretation and pro-active conservation management. Applied to conservation ecology purposes, the portfolio effect concept informs management strategies emphasizing identification and maintenance of key ecological processes that generate complexity, diversity and resilience against inevitable, often unpredictable perturbations.

Implications

Applied to the reciprocal goal of eliminating the least valued elements of global biodiversity, specifically lethal malaria parasites and their vector mosquitoes, simply understanding the portfolio effect concept informs more cautious interpretation of surveillance data and simulation model predictions. Malaria transmission mediated by guilds of multiple vectors in complex landscapes, with highly variable climatic and meteorological conditions, as well as changing patterns of land use and other human behaviours, will systematically tend to be more resilient to attack with vector control than it appears based on even the highest quality surveillance data or predictive models.

Conclusion

Malaria vector control programmes may need to be more ambitious, interpret their short-to-medium term assessments of intervention impact more cautiously, and manage stakeholder expectations more conservatively than has often been the case thus far.
Literature
1.
go back to reference Markowitz H. Portfolio selection. J Finance. 1952;7:77–91. Markowitz H. Portfolio selection. J Finance. 1952;7:77–91.
2.
go back to reference Schindler DE, Reed TE, Armstrong J. The portfolio concept in ecology and evolution. Front Ecol Evol. 2013;13:257–63.CrossRef Schindler DE, Reed TE, Armstrong J. The portfolio concept in ecology and evolution. Front Ecol Evol. 2013;13:257–63.CrossRef
5.
go back to reference Smith TA, Chitnis N, Penny M, Tanner M. Malaria modeling in the era of eradication. Cold Spring Harb Perspect Med. 2017;7:a025460.CrossRefPubMed Smith TA, Chitnis N, Penny M, Tanner M. Malaria modeling in the era of eradication. Cold Spring Harb Perspect Med. 2017;7:a025460.CrossRefPubMed
6.
go back to reference Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA. 1997;94:338–42.CrossRefPubMed Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA. 1997;94:338–42.CrossRefPubMed
7.
go back to reference Smith DL, Dushoff J, Snow RW, Hay SI. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature. 2005;438:492–5.CrossRefPubMedPubMedCentral Smith DL, Dushoff J, Snow RW, Hay SI. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature. 2005;438:492–5.CrossRefPubMedPubMedCentral
8.
go back to reference Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007;5:e42.CrossRefPubMedPubMedCentral Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007;5:e42.CrossRefPubMedPubMedCentral
9.
go back to reference Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Manguin S, editor. Anopheles mosquitoes—new insights into malaria vectors. Rijeka: Intech; 2013. p. 671–704. Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Manguin S, editor. Anopheles mosquitoes—new insights into malaria vectors. Rijeka: Intech; 2013. p. 671–704.
11.
go back to reference WHO. Guidance note-control of residual malaria parasite transmission. Geneva: World Health Organization Global Malaria Programme; 2014. p. 5. WHO. Guidance note-control of residual malaria parasite transmission. Geneva: World Health Organization Global Malaria Programme; 2014. p. 5.
12.
go back to reference WHO. Malaria terminology. WHO/HTM/GMP/2016. Geneva: World Health Organization; 2016. p. 31. WHO. Malaria terminology. WHO/HTM/GMP/2016. Geneva: World Health Organization; 2016. p. 31.
13.
go back to reference Molineaux L, Shidrawi GR, Clarke JL, Boulzaguet JR, Ashkar TS. Assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the man-biting rate and age-composition. Bull World Health Organ. 1979;57:265–74.PubMedPubMedCentral Molineaux L, Shidrawi GR, Clarke JL, Boulzaguet JR, Ashkar TS. Assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the man-biting rate and age-composition. Bull World Health Organ. 1979;57:265–74.PubMedPubMedCentral
14.
go back to reference Molineaux L, Gramiccia G. The Garki project. Geneva: World Health Organ; 1980. Molineaux L, Gramiccia G. The Garki project. Geneva: World Health Organ; 1980.
15.
go back to reference Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J. 2007;6:10.CrossRefPubMedPubMedCentral Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J. 2007;6:10.CrossRefPubMedPubMedCentral
16.
go back to reference Killeen GF, Smith TA. Exploring the contributions of bednets, cattle, insecticides and excito-repellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg. 2007;101:867–80.CrossRefPubMedPubMedCentral Killeen GF, Smith TA. Exploring the contributions of bednets, cattle, insecticides and excito-repellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg. 2007;101:867–80.CrossRefPubMedPubMedCentral
17.
go back to reference Govella NJ, Okumu FO, Killeen GF. Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors. Am J Trop Med Hyg. 2010;82:415–9.CrossRefPubMedPubMedCentral Govella NJ, Okumu FO, Killeen GF. Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors. Am J Trop Med Hyg. 2010;82:415–9.CrossRefPubMedPubMedCentral
18.
go back to reference Yakob L, Dunning R, Yan G. Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms. J R Soc Interface. 2011;8:799–806.CrossRefPubMed Yakob L, Dunning R, Yan G. Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms. J R Soc Interface. 2011;8:799–806.CrossRefPubMed
20.
go back to reference Kiware SS, Chitnis N, Devine GJ, Moore SJ, Majambere S, Killeen GF. Biologically meaningful coverage indicators for eliminating malaria transmission. Biol Lett. 2012;8:874–7.CrossRefPubMedPubMedCentral Kiware SS, Chitnis N, Devine GJ, Moore SJ, Majambere S, Killeen GF. Biologically meaningful coverage indicators for eliminating malaria transmission. Biol Lett. 2012;8:874–7.CrossRefPubMedPubMedCentral
21.
go back to reference Kiware SS, Chitnis N, Moore SJ, Devine GJ, Majambere S, Killeen GF. Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes. PLoS One. 2012;7:e37661.CrossRefPubMedPubMedCentral Kiware SS, Chitnis N, Moore SJ, Devine GJ, Majambere S, Killeen GF. Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes. PLoS One. 2012;7:e37661.CrossRefPubMedPubMedCentral
22.
go back to reference Briët OJ, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malar J. 2013;12:215.CrossRefPubMedPubMedCentral Briët OJ, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malar J. 2013;12:215.CrossRefPubMedPubMedCentral
23.
go back to reference Eckhoff PA. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg. 2013;88:817–27.CrossRefPubMedPubMedCentral Eckhoff PA. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg. 2013;88:817–27.CrossRefPubMedPubMedCentral
24.
go back to reference Killeen GF, Chitnis N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J. 2014;13:97.CrossRefPubMedPubMedCentral Killeen GF, Chitnis N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J. 2014;13:97.CrossRefPubMedPubMedCentral
25.
go back to reference Killeen GF, Seyoum A, Gimnig JE, Stevenson JC, Drakeley CJ, Chitnis N. Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar J. 2014;13:146.CrossRefPubMedPubMedCentral Killeen GF, Seyoum A, Gimnig JE, Stevenson JC, Drakeley CJ, Chitnis N. Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar J. 2014;13:146.CrossRefPubMedPubMedCentral
26.
go back to reference Killeen GF, Govella NJ, Lwetoijera DW, Okumu FO. Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malar J. 2016;15:225.CrossRefPubMedPubMedCentral Killeen GF, Govella NJ, Lwetoijera DW, Okumu FO. Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malar J. 2016;15:225.CrossRefPubMedPubMedCentral
27.
go back to reference Brady OJ, Godfray HC, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRefPubMedPubMedCentral Brady OJ, Godfray HC, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRefPubMedPubMedCentral
28.
go back to reference Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, et al. Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Glob Health. 2017;2:e000198.CrossRefPubMedPubMedCentral Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, et al. Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Glob Health. 2017;2:e000198.CrossRefPubMedPubMedCentral
29.
go back to reference Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, et al. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimize malaria vector control impact. BMJ Global Health. 2017;2:e000212.CrossRefPubMedPubMedCentral Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, et al. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimize malaria vector control impact. BMJ Global Health. 2017;2:e000212.CrossRefPubMedPubMedCentral
30.
go back to reference Kiware SS, Chitnis N, Tatarsky A, Wu S, Castellanos HMS, Gosling R, et al. Attacking the mosquito on multiple fronts: insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS One. 2017;12:e0187680.CrossRefPubMedPubMedCentral Kiware SS, Chitnis N, Tatarsky A, Wu S, Castellanos HMS, Gosling R, et al. Attacking the mosquito on multiple fronts: insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS One. 2017;12:e0187680.CrossRefPubMedPubMedCentral
31.
go back to reference Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.CrossRefPubMedPubMedCentral Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.CrossRefPubMedPubMedCentral
32.
go back to reference Killeen GF, Chaki PP, Reed TE, Moyes CL, Govella NJ. Entomological surveillance as a cornerstone of malaria elimination: a critical appraisal. In: Dev V, Manguin S, editors. Towards malaria elimination—a leap forward. London: InTech; 2018. p. 403–29. Killeen GF, Chaki PP, Reed TE, Moyes CL, Govella NJ. Entomological surveillance as a cornerstone of malaria elimination: a critical appraisal. In: Dev V, Manguin S, editors. Towards malaria elimination—a leap forward. London: InTech; 2018. p. 403–29.
33.
go back to reference Sinka ME, Golding N, Massey NC, Wiebe A, Huang Z, Hay SI, et al. Modelling the relative abundance of the primary African vectors of malaria before and after the implementation of indoor, insecticide-based vector control. Malar J. 2016;15:142.CrossRefPubMedPubMedCentral Sinka ME, Golding N, Massey NC, Wiebe A, Huang Z, Hay SI, et al. Modelling the relative abundance of the primary African vectors of malaria before and after the implementation of indoor, insecticide-based vector control. Malar J. 2016;15:142.CrossRefPubMedPubMedCentral
35.
go back to reference Riveron JM, Ibrahim SS, Mulamba C, Djouaka R, Irving H, Wondji MJ, et al. Genome-wide transcription and functional analyses reveal heterogeneous molecular mechanisms driving pyrethroids resistance in the major malaria vector Anopheles funestus across Africa. G3 (Bethesda). 2017;7:1819–32. Riveron JM, Ibrahim SS, Mulamba C, Djouaka R, Irving H, Wondji MJ, et al. Genome-wide transcription and functional analyses reveal heterogeneous molecular mechanisms driving pyrethroids resistance in the major malaria vector Anopheles funestus across Africa. G3 (Bethesda). 2017;7:1819–32.
36.
go back to reference Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS One. 2017;12:e0177807.CrossRefPubMedPubMedCentral Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS One. 2017;12:e0177807.CrossRefPubMedPubMedCentral
37.
go back to reference Coluzzi M, Sabatini A, Petrarca V, Di Deco MA. Behavioural divergences between mosquitoes with different inversion karyotypes in polymorphic populations of the Anopheles gambiae complex. Nature. 1977;266:832–3.CrossRefPubMed Coluzzi M, Sabatini A, Petrarca V, Di Deco MA. Behavioural divergences between mosquitoes with different inversion karyotypes in polymorphic populations of the Anopheles gambiae complex. Nature. 1977;266:832–3.CrossRefPubMed
38.
go back to reference Coluzzi M, Sabatini A, Petrarca V, Dideco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex Trans Roy Soc Trop Med Hyg. 1979;73:483–97.CrossRefPubMed Coluzzi M, Sabatini A, Petrarca V, Dideco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex Trans Roy Soc Trop Med Hyg. 1979;73:483–97.CrossRefPubMed
39.
40.
go back to reference Killeen GF, Kiware SS, Seyoum A, Gimnig JE, Corliss GF, Stevenson J, et al. Comparative assessment of diverse strategies for malaria vector population control based on measured rates at which mosquitoes utilize targeted resource subsets. Malar J. 2014;13:338.CrossRefPubMedPubMedCentral Killeen GF, Kiware SS, Seyoum A, Gimnig JE, Corliss GF, Stevenson J, et al. Comparative assessment of diverse strategies for malaria vector population control based on measured rates at which mosquitoes utilize targeted resource subsets. Malar J. 2014;13:338.CrossRefPubMedPubMedCentral
41.
go back to reference White GB, Magayuka SA, Boreham PFL. Comparative studies on sibling species of the Anopheles gambiae complex (Dip., Culicidae): bionomics and vectorial activity of species A and species B at Segera, Tanzania. Bull Entomol Res. 1972;62:295–317.CrossRef White GB, Magayuka SA, Boreham PFL. Comparative studies on sibling species of the Anopheles gambiae complex (Dip., Culicidae): bionomics and vectorial activity of species A and species B at Segera, Tanzania. Bull Entomol Res. 1972;62:295–317.CrossRef
42.
go back to reference Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC. The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by mosquito populations. Trans R Soc Trop Med Hyg. 2001;95:469–76.CrossRefPubMedPubMedCentral Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC. The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by mosquito populations. Trans R Soc Trop Med Hyg. 2001;95:469–76.CrossRefPubMedPubMedCentral
43.
go back to reference Garrett-Jones C, Boreham P, Pant CP. Feeding habits of anophelines (Diptera: Culicidae) in 1971–1978, with reference to the human blood index: a review. Bull Entomol Res. 1980;70:165–85.CrossRef Garrett-Jones C, Boreham P, Pant CP. Feeding habits of anophelines (Diptera: Culicidae) in 1971–1978, with reference to the human blood index: a review. Bull Entomol Res. 1980;70:165–85.CrossRef
44.
go back to reference Silver JB. Blood feeding and its epidemiological significance. Mosquito ecology: field sampling methods. Dordrecht: Springer; 2008. p. 677–769. Silver JB. Blood feeding and its epidemiological significance. Mosquito ecology: field sampling methods. Dordrecht: Springer; 2008. p. 677–769.
45.
go back to reference Gryseels C, Durnez L, Gerrets R, Uk S, Suon S, Set S, et al. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia. Malar J. 2015;14:165.CrossRefPubMedPubMedCentral Gryseels C, Durnez L, Gerrets R, Uk S, Suon S, Set S, et al. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia. Malar J. 2015;14:165.CrossRefPubMedPubMedCentral
46.
go back to reference Trung HD, Bortel WV, Sochantha T, Keokenchanh K, Briët OJ, Coosemans M. Behavioural heterogeneity of Anopheles species in ecologically different localities in southeast Asia: a challenge for vector control. Trop Med Int Health. 2005;10:251–62.CrossRefPubMed Trung HD, Bortel WV, Sochantha T, Keokenchanh K, Briët OJ, Coosemans M. Behavioural heterogeneity of Anopheles species in ecologically different localities in southeast Asia: a challenge for vector control. Trop Med Int Health. 2005;10:251–62.CrossRefPubMed
47.
go back to reference Van Bortel W, Trung HD, Hoi LX, Ham NV, Chut NV, Luu ND, et al. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control. Malar J. 2010;9:373.CrossRefPubMedPubMedCentral Van Bortel W, Trung HD, Hoi LX, Ham NV, Chut NV, Luu ND, et al. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control. Malar J. 2010;9:373.CrossRefPubMedPubMedCentral
48.
go back to reference WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012. p. 130. WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012. p. 130.
49.
go back to reference Muirhead-Thomson RC. Mosquito behaviour in relation to malaria transmission and control in the tropics. London: Edward Arnold & Co.; 1951. Muirhead-Thomson RC. Mosquito behaviour in relation to malaria transmission and control in the tropics. London: Edward Arnold & Co.; 1951.
50.
go back to reference Holstein MH. Biology of Anopheles gambiae. Geneva: World Health Organization; 1954. Holstein MH. Biology of Anopheles gambiae. Geneva: World Health Organization; 1954.
51.
go back to reference Gillies MT, De Meillon B. The Anophelinae of Africa South of the Sahara (Ethiopian zoogeographical region). Johannesburg: South African Institute for Medical Research; 1968. Gillies MT, De Meillon B. The Anophelinae of Africa South of the Sahara (Ethiopian zoogeographical region). Johannesburg: South African Institute for Medical Research; 1968.
52.
go back to reference Simard F, Ayala D, Kamdem GC, Pombi M, Etouna J, Ose K, et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009;9:17.CrossRefPubMedPubMedCentral Simard F, Ayala D, Kamdem GC, Pombi M, Etouna J, Ose K, et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009;9:17.CrossRefPubMedPubMedCentral
53.
go back to reference Gimonneau G, Pombi M, Choisy M, Morand S, Dabire RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26:9–17.CrossRefPubMed Gimonneau G, Pombi M, Choisy M, Morand S, Dabire RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26:9–17.CrossRefPubMed
54.
go back to reference Diabate A, Dabire RK, Kim EH, Dalton R, Millogo N, Baldet T, et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J Med Entomol. 2005;42:548–53.CrossRefPubMed Diabate A, Dabire RK, Kim EH, Dalton R, Millogo N, Baldet T, et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J Med Entomol. 2005;42:548–53.CrossRefPubMed
55.
go back to reference Killeen GF, Mukabana WR, Kalongolela MS, Kannady K, Lindsay SW, Tanner M, et al. Habitat targetting for controlling aquatic stages of malaria vectors in Africa. Am J Trop Med Hyg. 2006;74:517–8.PubMedCrossRef Killeen GF, Mukabana WR, Kalongolela MS, Kannady K, Lindsay SW, Tanner M, et al. Habitat targetting for controlling aquatic stages of malaria vectors in Africa. Am J Trop Med Hyg. 2006;74:517–8.PubMedCrossRef
57.
go back to reference Briercliffe R, Dalryimple-Champney W. Discussion on the malaria epidemic in Ceylon 1934–1935. Proc R Soc Med. 1935;29:537–62. Briercliffe R, Dalryimple-Champney W. Discussion on the malaria epidemic in Ceylon 1934–1935. Proc R Soc Med. 1935;29:537–62.
58.
go back to reference Dao A, Yaro AS, Diallo M, Timbine S, Huestis DL, Kassogue Y, et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature. 2014;516:387–90.CrossRefPubMedPubMedCentral Dao A, Yaro AS, Diallo M, Timbine S, Huestis DL, Kassogue Y, et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature. 2014;516:387–90.CrossRefPubMedPubMedCentral
59.
go back to reference Smith DL, Cohen JM, Chiyaka C, Johnston G, Gething PW, Gosling R, et al. A sticky situation: the unexpected stability of malaria elimination. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120145.CrossRefPubMedPubMedCentral Smith DL, Cohen JM, Chiyaka C, Johnston G, Gething PW, Gosling R, et al. A sticky situation: the unexpected stability of malaria elimination. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120145.CrossRefPubMedPubMedCentral
60.
go back to reference Slater HC, Ross A, Ouedraogo AL, White LJ, Nguon C, Walker PG, et al. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature. 2015;528:S94–101.CrossRefPubMed Slater HC, Ross A, Ouedraogo AL, White LJ, Nguon C, Walker PG, et al. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature. 2015;528:S94–101.CrossRefPubMed
61.
go back to reference Najera JA. Malaria control: achievements, problems and strategies. Parassitologia. 2001;43:1–89.PubMed Najera JA. Malaria control: achievements, problems and strategies. Parassitologia. 2001;43:1–89.PubMed
62.
go back to reference Najera JA, Gonzalez-Silva M, Alonso PL. Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS Med. 2011;8:e1000412.CrossRefPubMedPubMedCentral Najera JA, Gonzalez-Silva M, Alonso PL. Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS Med. 2011;8:e1000412.CrossRefPubMedPubMedCentral
63.
go back to reference MacDonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957. MacDonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957.
64.
go back to reference Garrett-Jones C. Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature. 1964;204:1173–5.CrossRefPubMed Garrett-Jones C. Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature. 1964;204:1173–5.CrossRefPubMed
66.
go back to reference Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behaviour following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.CrossRefPubMed Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behaviour following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.CrossRefPubMed
67.
go back to reference Moiroux N, Damien GB, Egrot M, Djenontin A, Chandre F, Corbel V, et al. Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS One. 2014;9:e104967.CrossRefPubMedPubMedCentral Moiroux N, Damien GB, Egrot M, Djenontin A, Chandre F, Corbel V, et al. Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS One. 2014;9:e104967.CrossRefPubMedPubMedCentral
68.
go back to reference Sougoufara S, Diedhiou SM, Doucoure S, Diagne N, Sembene PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.CrossRefPubMedPubMedCentral Sougoufara S, Diedhiou SM, Doucoure S, Diagne N, Sembene PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.CrossRefPubMedPubMedCentral
69.
go back to reference Sougoufara S, Thiaw O, Cailleau A, Diagne N, Harry M, Bouganali C, et al. The impact of periodic distribution campaigns of long-lasting insecticide-treated bed nets on malaria vector dynamics and human exposure in Dielmo, Senegal. Am J Trop Med Hyg. 2018;98:1343–52.CrossRefPubMed Sougoufara S, Thiaw O, Cailleau A, Diagne N, Harry M, Bouganali C, et al. The impact of periodic distribution campaigns of long-lasting insecticide-treated bed nets on malaria vector dynamics and human exposure in Dielmo, Senegal. Am J Trop Med Hyg. 2018;98:1343–52.CrossRefPubMed
70.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedPubMedCentral Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedPubMedCentral
71.
go back to reference Meyers JI, Pathikonda S, Popkin-Hall ZR, Medeiros MC, Fuseini G, Matias A, et al. Increasing outdoor host-seeking in Anopheles gambiae over 6 years of vector control on Bioko Island. Malar J. 2016;15:239.CrossRefPubMedPubMedCentral Meyers JI, Pathikonda S, Popkin-Hall ZR, Medeiros MC, Fuseini G, Matias A, et al. Increasing outdoor host-seeking in Anopheles gambiae over 6 years of vector control on Bioko Island. Malar J. 2016;15:239.CrossRefPubMedPubMedCentral
72.
go back to reference Yohannes M, Boelee E. Early biting rhythm in the afro-tropical vector of malaria, Anopheles arabiensis, and challenges for its control in Ethiopia. Med Vet Entomol. 2012;26:103–5.CrossRefPubMed Yohannes M, Boelee E. Early biting rhythm in the afro-tropical vector of malaria, Anopheles arabiensis, and challenges for its control in Ethiopia. Med Vet Entomol. 2012;26:103–5.CrossRefPubMed
73.
go back to reference Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical region). Johannesburg: South Afr Med Res Institute; 1987. Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical region). Johannesburg: South Afr Med Res Institute; 1987.
74.
go back to reference Kawada H, Dida GO, Sonye G, Njenga SM, Mwandawiro C, Minakawa N. Reconsideration of Anopheles rivulorum as a vector of Plasmodium falciparum in western Kenya: some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance. Parasit Vectors. 2012;5:230.CrossRefPubMedPubMedCentral Kawada H, Dida GO, Sonye G, Njenga SM, Mwandawiro C, Minakawa N. Reconsideration of Anopheles rivulorum as a vector of Plasmodium falciparum in western Kenya: some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance. Parasit Vectors. 2012;5:230.CrossRefPubMedPubMedCentral
Metadata
Title
The portfolio effect cushions mosquito populations and malaria transmission against vector control interventions
Authors
Gerry F. Killeen
Thomas E. Reed
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2441-z

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue