Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus

Authors: Katey D. Glunt, Shüné V. Oliver, Richard H. Hunt, Krijn P. Paaijmans

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

It is anticipated that malaria elimination efforts in Africa will be hampered by increasing resistance to the limited arsenal of insecticides approved for use in public health. However, insecticide susceptibility status of vector populations evaluated under standard insectary test conditions can give a false picture of the threat, as the thermal environment in which the insect and insecticide interact plays a significant role in insecticide toxicity.

Methods

The effect of temperature on the expression of the standard WHO insecticide resistance phenotype was examined using Anopheles arabiensis and Anopheles funestus strains: a susceptible strain and the derived resistant strain, selected in the laboratory for resistance to DDT or pyrethroids. The susceptibility of mosquitoes to the pyrethroid deltamethrin or the carbamate bendiocarb was assessed at 18, 25 or 30 °C. The ability of the pyrethroid synergist piperonyl-butoxide (PBO) to restore pyrethroid susceptibility was also assessed at these temperatures.

Results

Temperature impacted the toxicity of deltamethrin and bendiocarb. Although the resistant An. funestus strain was uniformly resistant to deltamethrin across temperatures, increasing temperature increased the resistance of the susceptible An. arabiensis strain. Against susceptible An. funestus and resistant An. arabiensis females, deltamethrin exposure at temperatures both lower and higher than standard insectary conditions increased mortality. PBO exposure completely restored deltamethrin susceptibility at all temperatures. Bendiocarb displayed a consistently positive temperature coefficient against both susceptible and resistant An. funestus strains, with survival increasing as temperature increased.

Conclusions

Environmental temperature has a marked effect on the efficacy of insecticides used in public health against important African malaria vectors. Caution must be exercised when drawing conclusions about a chemical’s efficacy from laboratory assays performed at only one temperature, as phenotypic resistance can vary significantly even over a temperature range that could be experienced by mosquitoes in the field during a single day. Similarly, it might be inappropriate to assume equal efficacy of a control tool over a geographic area where local conditions vary drastically. Additional studies into the effects of temperature on the efficacy of insecticide-based interventions under field conditions are warranted.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed
2.
go back to reference Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015;14:173.CrossRefPubMedPubMedCentral Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015;14:173.CrossRefPubMedPubMedCentral
3.
go back to reference WHO. World malaria report 2016. Geneva: World Health Organization. 2016. WHO. World malaria report 2016. Geneva: World Health Organization. 2016. 
4.
5.
go back to reference WHO. Implications of insecticide resistance for malaria vector control. Geneva: World Health Organization; 2016. WHO. Implications of insecticide resistance for malaria vector control. Geneva: World Health Organization; 2016.
6.
go back to reference WHO. Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization; 2012 WHO. Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization; 2012
7.
go back to reference Miller T, Adams M. Mode of action of pyrethroids. In: Coats JR, editor. Insecticide Mode of Action. Cambridge: Academic Press; 1982. p. 3–27.CrossRef Miller T, Adams M. Mode of action of pyrethroids. In: Coats JR, editor. Insecticide Mode of Action. Cambridge: Academic Press; 1982. p. 3–27.CrossRef
8.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2nd ed. Geneva: World Health Organization. 2016. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2nd ed. Geneva: World Health Organization. 2016.
9.
go back to reference Glunt KD, Blanford JI, Paaijmans KP. Chemicals, climate, and control: increasing the effectiveness of malaria vector control tools by considering relevant temperatures. PLoS Pathog. 2013;9:e1003602.CrossRefPubMedPubMedCentral Glunt KD, Blanford JI, Paaijmans KP. Chemicals, climate, and control: increasing the effectiveness of malaria vector control tools by considering relevant temperatures. PLoS Pathog. 2013;9:e1003602.CrossRefPubMedPubMedCentral
10.
go back to reference Boina DR, Onagbola EO, Salyani M, Stelinski LL. Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol. 2009;102:685–91.CrossRefPubMed Boina DR, Onagbola EO, Salyani M, Stelinski LL. Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol. 2009;102:685–91.CrossRefPubMed
11.
go back to reference Hodjati MH, Curtis CF. Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles. Med Vet Entomol. 1999;13:415–22.CrossRefPubMed Hodjati MH, Curtis CF. Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles. Med Vet Entomol. 1999;13:415–22.CrossRefPubMed
12.
go back to reference Oxborough RM, N’Guessan R, Jones R, Kitau J, Ngufor C, Malone D, et al. The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control. Malar J. 2015;14:124.CrossRefPubMedPubMedCentral Oxborough RM, N’Guessan R, Jones R, Kitau J, Ngufor C, Malone D, et al. The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control. Malar J. 2015;14:124.CrossRefPubMedPubMedCentral
13.
go back to reference Hadaway AB, Barlow F. The influence of environmental conditions on the contact toxicity of some insecticide deposits to adult mosquitos Anopheles stephensi Liston. Bull Entomol Res. 1963;54:329–44.CrossRef Hadaway AB, Barlow F. The influence of environmental conditions on the contact toxicity of some insecticide deposits to adult mosquitos Anopheles stephensi Liston. Bull Entomol Res. 1963;54:329–44.CrossRef
14.
go back to reference Glunt KD, Paaijmans KP, Read AF, Thomas MB. Environmental temperatures significantly change the impact of insecticides measured using WHOPES protocols. Malar J. 2014;13:350.CrossRefPubMedPubMedCentral Glunt KD, Paaijmans KP, Read AF, Thomas MB. Environmental temperatures significantly change the impact of insecticides measured using WHOPES protocols. Malar J. 2014;13:350.CrossRefPubMedPubMedCentral
15.
go back to reference Hunt RH, Brooke BD, Pillay C, Koekemoer LL, Coetzee M. Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med Vet Entomol. 2005;19:271–5.CrossRefPubMed Hunt RH, Brooke BD, Pillay C, Koekemoer LL, Coetzee M. Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med Vet Entomol. 2005;19:271–5.CrossRefPubMed
16.
go back to reference Oliver SV, Brooke BD. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors. 2014;7:390.CrossRefPubMedPubMedCentral Oliver SV, Brooke BD. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors. 2014;7:390.CrossRefPubMedPubMedCentral
17.
go back to reference Oliver SV, Brooke BD. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malar J. 2013;12:44.CrossRefPubMedPubMedCentral Oliver SV, Brooke BD. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malar J. 2013;12:44.CrossRefPubMedPubMedCentral
18.
go back to reference Okoye PN, Brooke BD, Hunt RH, Coetzee M. Relative developmental and reproductive fitness associated with pyrethroid resistance in the major southern African malaria vector Anopheles funestus. Bull Entomol Res. 2007;97:599–605.CrossRefPubMed Okoye PN, Brooke BD, Hunt RH, Coetzee M. Relative developmental and reproductive fitness associated with pyrethroid resistance in the major southern African malaria vector Anopheles funestus. Bull Entomol Res. 2007;97:599–605.CrossRefPubMed
19.
go back to reference Amenya DA, Naguran R, Lo T-CM, Ranson H, Spillings BL, Wood OR, et al. Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol Biol. 2008;17:19–25.CrossRefPubMed Amenya DA, Naguran R, Lo T-CM, Ranson H, Spillings BL, Wood OR, et al. Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol Biol. 2008;17:19–25.CrossRefPubMed
20.
go back to reference Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 2009;19:452–9.CrossRefPubMedPubMedCentral Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 2009;19:452–9.CrossRefPubMedPubMedCentral
21.
go back to reference Venter N, Oliver SV, Muleba M, Davies C, Hunt RH, Koekemoer LL, et al. Benchmarking insecticide resistance intensity bioassays for Anopheles malaria vector species against resistance phenotypes of known epidemiological significance. Parasit Vectors. 2017;10:198.CrossRefPubMedPubMedCentral Venter N, Oliver SV, Muleba M, Davies C, Hunt RH, Koekemoer LL, et al. Benchmarking insecticide resistance intensity bioassays for Anopheles malaria vector species against resistance phenotypes of known epidemiological significance. Parasit Vectors. 2017;10:198.CrossRefPubMedPubMedCentral
22.
go back to reference Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–9.CrossRefPubMedPubMedCentral Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–9.CrossRefPubMedPubMedCentral
23.
go back to reference Brooke BD, Kloke G, Hunt RH, Koekemoer LL, Tem EA, Taylor ME, et al. Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bull Entomol Res. 2001;91:265–72.CrossRefPubMed Brooke BD, Kloke G, Hunt RH, Koekemoer LL, Tem EA, Taylor ME, et al. Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bull Entomol Res. 2001;91:265–72.CrossRefPubMed
26.
go back to reference Pennetier C, Bouraima A, Chandre F, Piameu M, Etang J, Rossignol M, et al. Efficacy of Olyset® Plus, a new long-lasting insecticidal net incorporating permethrin and piperonil-butoxide against multi-resistant malaria vectors. PLoS ONE. 2013;8:e75134.CrossRefPubMedPubMedCentral Pennetier C, Bouraima A, Chandre F, Piameu M, Etang J, Rossignol M, et al. Efficacy of Olyset® Plus, a new long-lasting insecticidal net incorporating permethrin and piperonil-butoxide against multi-resistant malaria vectors. PLoS ONE. 2013;8:e75134.CrossRefPubMedPubMedCentral
29.
go back to reference Bagi J, Grisales N, Corkill R, Morgan JC, N’Falé S, Brogdon WG, et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J. 2015;14:210.CrossRefPubMedPubMedCentral Bagi J, Grisales N, Corkill R, Morgan JC, N’Falé S, Brogdon WG, et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J. 2015;14:210.CrossRefPubMedPubMedCentral
30.
go back to reference Viana M, Hughes A, Matthiopoulos J, Ranson H, Ferguson HM. Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes. Proc Natl Acad Sci USA. 2016;113:8975–80.CrossRefPubMedPubMedCentral Viana M, Hughes A, Matthiopoulos J, Ranson H, Ferguson HM. Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes. Proc Natl Acad Sci USA. 2016;113:8975–80.CrossRefPubMedPubMedCentral
32.
go back to reference N’Guessan R, Odjo A, Ngufor C, Malone D, Rowland M. A chlorfenapyr mixture net Interceptor® G2 shows high efficacy and wash durability against resistant mosquitoes in West Africa. PLoS ONE. 2016;11:e0165925.CrossRefPubMedPubMedCentral N’Guessan R, Odjo A, Ngufor C, Malone D, Rowland M. A chlorfenapyr mixture net Interceptor® G2 shows high efficacy and wash durability against resistant mosquitoes in West Africa. PLoS ONE. 2016;11:e0165925.CrossRefPubMedPubMedCentral
33.
go back to reference Trape J-F, Tall A, Diagne N, Ndiath O, Ly AB, Faye J, et al. Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis. 2011;11:925–32.CrossRefPubMed Trape J-F, Tall A, Diagne N, Ndiath O, Ly AB, Faye J, et al. Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis. 2011;11:925–32.CrossRefPubMed
34.
go back to reference Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.CrossRefPubMedPubMedCentral Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.CrossRefPubMedPubMedCentral
35.
go back to reference Rivero A, Vézilier J, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog. 2010;6:e1001000.CrossRefPubMedPubMedCentral Rivero A, Vézilier J, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog. 2010;6:e1001000.CrossRefPubMedPubMedCentral
37.
go back to reference World Health Organization. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015. World Health Organization. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015.
Metadata
Title
The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus
Authors
Katey D. Glunt
Shüné V. Oliver
Richard H. Hunt
Krijn P. Paaijmans
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2250-4

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue