Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Stabilization of RDT target antigens present in dried Plasmodium falciparum-infected samples for validating malaria rapid diagnostic tests at the point of care

Authors: Collins Morang’a, Cyrus Ayieko, George Awinda, Rachel Achilla, Caroline Moseti, Bernhards Ogutu, John Waitumbi, Elizabeth Wanja

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Malaria rapid diagnostic tests (RDTs) are a great achievement in implementation of parasite based diagnosis as recommended by World Health Organization. A major drawback of RDTs is lack of positive controls to validate different batches/lots at the point of care. Dried Plasmodium falciparum-infected samples with the RDT target antigens have been suggested as possible positive control but their utility in resource limited settings is hampered by rapid loss of activity over time.

Methods

This study evaluated the effectiveness of chemical additives to improve long term storage stability of RDT target antigens (HRP2, pLDH and aldolase) in dried P. falciparum-infected samples using parasitized whole blood and culture samples. Samples were treated with ten selected chemical additives mainly sucrose, trehalose, LDH stabilizer and their combinations. After baseline activity was established, the samples were air dried in bio-safety cabinet and stored at room temperatures (~ 25 °C). Testing of the stabilized samples using SD Bioline, BinaxNOW, CareStart, and First Response was done at intervals for 53 weeks.

Results

Stability of HRP2 at ambient temperature was reported at 21–24 weeks while that of PAN antigens (pLDH and aldolase) was 2–18 weeks of storage at all parasite densities. The ten chemical additives increased the percentage stability of HRP2 and PAN antigens. Sucrose alone and its combinations with Alsever’s solution or biostab significantly increased stability of HRP2 by 56% at 2000 p/µL (p < 0.001). Trehalose and its combinations with biostab, sucrose or glycerol significantly increased stability of HRP2 by 57% (p < 0.001). Unlike sucrose, the stability of the HRP2 was significantly retained by trehalose at lower concentrations (500, and 200 p/µL). Trehalose in combination biostab stabilizer increased the percentage stability of PAN antigens by 42, and 32% at 2000 and 500 p/µL respectively (p < 0.01). This was also the chemical combination with the shortest reconstitution time (~ < 20 min).

Conclusions

These findings confirm that stabilizing RDT target antigens in dried P. falciparum-infected samples using chemical additives provides field-stable positive controls for malaria RDTs.
Appendix
Available only for authorised users
Literature
3.
go back to reference Wanja EW, Kuya N, Moranga C, Hickman M, Johnson JD, Moseti C, et al. Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya. Malar J. 2016;15:456.CrossRefPubMedPubMedCentral Wanja EW, Kuya N, Moranga C, Hickman M, Johnson JD, Moseti C, et al. Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya. Malar J. 2016;15:456.CrossRefPubMedPubMedCentral
4.
go back to reference Chiodini PL, Bowers K, Jorgensen P, Barnwell JW, Grady KK, Luchavez J, et al. The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests. Trans R Soc Trop Med Hyg. 2007;101:331–7.CrossRefPubMed Chiodini PL, Bowers K, Jorgensen P, Barnwell JW, Grady KK, Luchavez J, et al. The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests. Trans R Soc Trop Med Hyg. 2007;101:331–7.CrossRefPubMed
5.
go back to reference Albertini A, Lee E, Coulibaly SO, Sleshi M, Faye B, Mationg ML, et al. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines. Malar J. 2012;11:406.CrossRefPubMedPubMedCentral Albertini A, Lee E, Coulibaly SO, Sleshi M, Faye B, Mationg ML, et al. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines. Malar J. 2012;11:406.CrossRefPubMedPubMedCentral
7.
go back to reference Mouatcho JC, Goldring JP. Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol. 2013;62:1491–505.CrossRefPubMed Mouatcho JC, Goldring JP. Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol. 2013;62:1491–505.CrossRefPubMed
8.
go back to reference Bell D, Bwanika JB, Cunningham J, Gatton M, Gonzalez IJ, Hopkins H, et al. Prototype positive control wells for malaria rapid diagnostic tests: prospective evaluation of implementation among health workers in Lao People’s Democratic Republic and Uganda. Am J Trop Med Hyg. 2017;96:319–29.CrossRefPubMedPubMedCentral Bell D, Bwanika JB, Cunningham J, Gatton M, Gonzalez IJ, Hopkins H, et al. Prototype positive control wells for malaria rapid diagnostic tests: prospective evaluation of implementation among health workers in Lao People’s Democratic Republic and Uganda. Am J Trop Med Hyg. 2017;96:319–29.CrossRefPubMedPubMedCentral
9.
go back to reference Aidoo M, Patel JC, Barnwell JW. Dried Plasmodium falciparum-infected samples as positive controls for malaria rapid diagnostic tests. Malar J. 2012;11:239.CrossRefPubMedPubMedCentral Aidoo M, Patel JC, Barnwell JW. Dried Plasmodium falciparum-infected samples as positive controls for malaria rapid diagnostic tests. Malar J. 2012;11:239.CrossRefPubMedPubMedCentral
10.
go back to reference Tamiru A, Boulanger L, Chang MA, Malone JL, Aidoo M. Field assessment of dried Plasmodium falciparum samples for malaria rapid diagnostic test quality control and proficiency testing in ethiopia. Malar J. 2015;14:11.CrossRefPubMedPubMedCentral Tamiru A, Boulanger L, Chang MA, Malone JL, Aidoo M. Field assessment of dried Plasmodium falciparum samples for malaria rapid diagnostic test quality control and proficiency testing in ethiopia. Malar J. 2015;14:11.CrossRefPubMedPubMedCentral
11.
go back to reference Carpenter JF, Manning MC, Randolph TW. Long-term storage of proteins. Curr Protoc Protein Sci. 2002;Chapter 4:Unit 4.6.PubMed Carpenter JF, Manning MC, Randolph TW. Long-term storage of proteins. Curr Protoc Protein Sci. 2002;Chapter 4:Unit 4.6.PubMed
12.
go back to reference Balcão VM, Vila MM. Structural and functional stabilization of protein entities: State-of-the-art. Adv Drug Deliv Rev. 2015;93:25–41.CrossRefPubMed Balcão VM, Vila MM. Structural and functional stabilization of protein entities: State-of-the-art. Adv Drug Deliv Rev. 2015;93:25–41.CrossRefPubMed
13.
go back to reference Ohtake S, Kita Y, Arakawa T. Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev. 2011;63:1053–73.CrossRefPubMed Ohtake S, Kita Y, Arakawa T. Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev. 2011;63:1053–73.CrossRefPubMed
15.
go back to reference Katyal N, Deep S. Revisiting the conundrum of trehalose stabilization. Phys Chem Chem Phys. 2014;16:26746–61.CrossRefPubMed Katyal N, Deep S. Revisiting the conundrum of trehalose stabilization. Phys Chem Chem Phys. 2014;16:26746–61.CrossRefPubMed
16.
go back to reference Lee JC, Timasheff SN. The stabilization of proteins by sucrose. J Biol Chem. 1981;256:7193–201.PubMed Lee JC, Timasheff SN. The stabilization of proteins by sucrose. J Biol Chem. 1981;256:7193–201.PubMed
17.
go back to reference Vagenende V, Yap MG, Trout BL. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry. 2009;48:11084–96.CrossRefPubMed Vagenende V, Yap MG, Trout BL. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry. 2009;48:11084–96.CrossRefPubMed
19.
go back to reference Lowe ML, Gin JB, Demetriou JA. Stability of erythrocytic enzymes for screening tests. Clin Chem. 1973;19:529–30.PubMed Lowe ML, Gin JB, Demetriou JA. Stability of erythrocytic enzymes for screening tests. Clin Chem. 1973;19:529–30.PubMed
20.
go back to reference Subbaraman LN, Glasier MA, Senchyna M, Jones L. Stabilization of lysozyme mass extracted from lotrafilcon silicone hydrogel contact lenses. Optom Vis Sci. 2005;82:209–14.CrossRefPubMed Subbaraman LN, Glasier MA, Senchyna M, Jones L. Stabilization of lysozyme mass extracted from lotrafilcon silicone hydrogel contact lenses. Optom Vis Sci. 2005;82:209–14.CrossRefPubMed
21.
go back to reference Sifuna P, Oyugi M, Ogutu B, Andagalu B, Otieno A, Owira V, et al. Health and demographic surveillance system profile: the Kombewa health and demographic surveillance system (Kombewa HDSS). Int J Epidemiol. 2014;43:1097–104.CrossRefPubMedPubMedCentral Sifuna P, Oyugi M, Ogutu B, Andagalu B, Otieno A, Owira V, et al. Health and demographic surveillance system profile: the Kombewa health and demographic surveillance system (Kombewa HDSS). Int J Epidemiol. 2014;43:1097–104.CrossRefPubMedPubMedCentral
22.
go back to reference Kreilgaard L, Frokjaer S, Flink JM, Randolph TW, Carpenter JF. Effects of additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solid. Arch Biochem Biophys. 1998;360:121–34.CrossRefPubMed Kreilgaard L, Frokjaer S, Flink JM, Randolph TW, Carpenter JF. Effects of additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solid. Arch Biochem Biophys. 1998;360:121–34.CrossRefPubMed
23.
go back to reference Hamada H, Arakawa T, Shiraki K. Effect of additives on protein aggregation. Curr Pharm Biotechnol. 2009;10:400–7.CrossRefPubMed Hamada H, Arakawa T, Shiraki K. Effect of additives on protein aggregation. Curr Pharm Biotechnol. 2009;10:400–7.CrossRefPubMed
24.
go back to reference Kendrick BS, Chang BS, Arakawa T, Peterson B, Randolph TW, Manning MC, et al. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state. Proc Natl Acad Sci USA. 1997;94:11917–22.CrossRefPubMedPubMedCentral Kendrick BS, Chang BS, Arakawa T, Peterson B, Randolph TW, Manning MC, et al. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state. Proc Natl Acad Sci USA. 1997;94:11917–22.CrossRefPubMedPubMedCentral
25.
go back to reference Yazdani Y, Mohammadi S, Yousefi M, Shokri F. Preliminary assessment of various additives on the specific reactivity of anti-rhbsag monoclonal antibodies. Avicenna J Med Biotechnol. 2015;7:145–50.PubMedPubMedCentral Yazdani Y, Mohammadi S, Yousefi M, Shokri F. Preliminary assessment of various additives on the specific reactivity of anti-rhbsag monoclonal antibodies. Avicenna J Med Biotechnol. 2015;7:145–50.PubMedPubMedCentral
26.
go back to reference Wanja E, Achilla R, Obare P, Adeny R, Moseti C, Otieno V, et al. Evaluation of a laboratory quality assurance pilot programme for malaria diagnostics in low-transmission areas of Kenya, 2013. Malar J. 2017;16:221.CrossRefPubMedPubMedCentral Wanja E, Achilla R, Obare P, Adeny R, Moseti C, Otieno V, et al. Evaluation of a laboratory quality assurance pilot programme for malaria diagnostics in low-transmission areas of Kenya, 2013. Malar J. 2017;16:221.CrossRefPubMedPubMedCentral
27.
go back to reference Hansen JP. Can’t miss: conquer any number task by making important statistics simple. Part 6. Tests of significance (z-test statistic, rejecting null hypothesis, p-value), t test, z test for proportions, statistical significance versus meaningful difference. J Healthc Qual. 2004;26:43–53.CrossRefPubMed Hansen JP. Can’t miss: conquer any number task by making important statistics simple. Part 6. Tests of significance (z-test statistic, rejecting null hypothesis, p-value), t test, z test for proportions, statistical significance versus meaningful difference. J Healthc Qual. 2004;26:43–53.CrossRefPubMed
28.
go back to reference Baptista RP, Pedersen S, Cabrita GJ, Otzen DE, Cabral JM, Melo EP. Thermodynamics and mechanism of cutinase stabilization by trehalose. Biopolymers. 2008;89:538–47.CrossRefPubMed Baptista RP, Pedersen S, Cabrita GJ, Otzen DE, Cabral JM, Melo EP. Thermodynamics and mechanism of cutinase stabilization by trehalose. Biopolymers. 2008;89:538–47.CrossRefPubMed
29.
go back to reference Hedoux A, Willart JF, Paccou L, Guinet Y, Affouard F, Lerbret A, et al. Thermostabilization mechanism of bovine serum albumin by trehalose. J Phys Chem B. 2009;113:6119–26.CrossRefPubMed Hedoux A, Willart JF, Paccou L, Guinet Y, Affouard F, Lerbret A, et al. Thermostabilization mechanism of bovine serum albumin by trehalose. J Phys Chem B. 2009;113:6119–26.CrossRefPubMed
30.
go back to reference Kawai K, Suzuki T. Stabilizing effect of four types of disaccharide on the enzymatic activity of freeze-dried lactate dehydrogenase: step by step evaluation from freezing to storage. Pharm Res. 2007;24:1883–90.CrossRefPubMed Kawai K, Suzuki T. Stabilizing effect of four types of disaccharide on the enzymatic activity of freeze-dried lactate dehydrogenase: step by step evaluation from freezing to storage. Pharm Res. 2007;24:1883–90.CrossRefPubMed
31.
go back to reference Versteeg I, Mens PF. Development of a stable positive control to be used for quality assurance of rapid diagnostic tests for malaria. Diagn Microbiol Infect Dis. 2009;64:256–60.CrossRefPubMed Versteeg I, Mens PF. Development of a stable positive control to be used for quality assurance of rapid diagnostic tests for malaria. Diagn Microbiol Infect Dis. 2009;64:256–60.CrossRefPubMed
32.
go back to reference Chang L, Shepherd D, Sun J, Ouellette D, Grant KL, Tang XC, et al. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix. J Pharm Sci. 2005;94:1427–44.CrossRefPubMed Chang L, Shepherd D, Sun J, Ouellette D, Grant KL, Tang XC, et al. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix. J Pharm Sci. 2005;94:1427–44.CrossRefPubMed
33.
go back to reference Zancan P, Sola-Penna M. Trehalose and glycerol stabilize and renature yeast inorganic pyrophosphatase inactivated by very high temperatures. Arch Biochem Biophys. 2005;444:52–60.CrossRefPubMed Zancan P, Sola-Penna M. Trehalose and glycerol stabilize and renature yeast inorganic pyrophosphatase inactivated by very high temperatures. Arch Biochem Biophys. 2005;444:52–60.CrossRefPubMed
34.
go back to reference Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, Kamal M, et al. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature. 2007;450:1091–5.CrossRefPubMed Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, Kamal M, et al. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature. 2007;450:1091–5.CrossRefPubMed
35.
go back to reference Martin SK, Rajasekariah GH, Awinda G, Waitumbi J, Kifude C. Unified parasite lactate dehydrogenase and histidine-rich protein elisa for quantification of Plasmodium falciparum. Am J Trop Med Hyg. 2009;80:516–22.PubMed Martin SK, Rajasekariah GH, Awinda G, Waitumbi J, Kifude C. Unified parasite lactate dehydrogenase and histidine-rich protein elisa for quantification of Plasmodium falciparum. Am J Trop Med Hyg. 2009;80:516–22.PubMed
36.
go back to reference Mahende C, Ngasala B, Lusingu J, Yong TS, Lushino P, Lemnge M, et al. Performance of rapid diagnostic test, blood-film microscopy and pcr for the diagnosis of malaria infection among febrile children from korogwe district, tanzania. Malar J. 2016;15:391.CrossRefPubMedPubMedCentral Mahende C, Ngasala B, Lusingu J, Yong TS, Lushino P, Lemnge M, et al. Performance of rapid diagnostic test, blood-film microscopy and pcr for the diagnosis of malaria infection among febrile children from korogwe district, tanzania. Malar J. 2016;15:391.CrossRefPubMedPubMedCentral
Metadata
Title
Stabilization of RDT target antigens present in dried Plasmodium falciparum-infected samples for validating malaria rapid diagnostic tests at the point of care
Authors
Collins Morang’a
Cyrus Ayieko
George Awinda
Rachel Achilla
Caroline Moseti
Bernhards Ogutu
John Waitumbi
Elizabeth Wanja
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2155-7

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue