Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Global trends in the production and use of DDT for control of malaria and other vector-borne diseases

Authors: Henk van den Berg, Gamini Manuweera, Flemming Konradsen

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

DDT was among the initial persistent organic pollutants listed under the Stockholm Convention and continues to be used for control of malaria and other vector-borne diseases in accordance with its provisions on acceptable purposes. Trends in the production and use of DDT were evaluated over the period 2001–2014.

Results

Available data on global production of DDT showed a 32% decline over the reporting period, from 5144 to 3491 metric tons of active ingredient p.a. Similarly, global use of DDT, for control of malaria and leishmaniasis, showed a 30% decline over the period 2001–2014, from 5388 metric tons p.a. to 3772 metric tons p.a. India has been by far the largest producer and user of DDT. In some countries, DDT is used in response to the development of resistance in malaria vectors against pyrethroid and carbamate insecticides. Some other countries have stopped using DDT, in compliance to the Convention, or in response to DDT resistance in malaria vectors. Progress has been made in establishing or amending national legal measures on DDT, with the majority of countries reportedly having measures in place that prohibit, or restrict, the production, import, export and use of DDT. Limitations in achieving the objectives of the Stockholm Convention with regard to DDT include major shortcomings in periodic reporting by Parties to the Stockholm Convention, and deficiencies in reporting to the DDT Register.

Conclusion

Global production and global use of DDT have shown a modest decline since the adoption of the Stockholm Convention.
Literature
4.
go back to reference UNEP. Report by the United Nations Environment Programme on the road map for the development of alternatives to DDT. UNEP/POPS/COP.7/INF/6. Geneva: Secretariat of the Stockholm Convention, United Nations Development Programme; 2015. UNEP. Report by the United Nations Environment Programme on the road map for the development of alternatives to DDT. UNEP/POPS/COP.7/INF/6. Geneva: Secretariat of the Stockholm Convention, United Nations Development Programme; 2015.
6.
9.
go back to reference van den Berg M, Kypke K, Kotz A, Tritscher A, Lee SY, Magulova K, et al. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit–risk evaluation of breastfeeding. Arch Toxicol. 2017;91:83–96.CrossRefPubMed van den Berg M, Kypke K, Kotz A, Tritscher A, Lee SY, Magulova K, et al. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit–risk evaluation of breastfeeding. Arch Toxicol. 2017;91:83–96.CrossRefPubMed
14.
go back to reference Fettene M, Olana D, Christian RN, Koekemoer LL, Coetzee M. Insecticide resistance in Anopheles arabiensis from Ethiopia. Afr Entomol. 2013;21:89–94.CrossRef Fettene M, Olana D, Christian RN, Koekemoer LL, Coetzee M. Insecticide resistance in Anopheles arabiensis from Ethiopia. Afr Entomol. 2013;21:89–94.CrossRef
15.
go back to reference Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Ramdeen V, Phiri FN, et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE. 2011;6:e24336.CrossRefPubMedPubMedCentral Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Ramdeen V, Phiri FN, et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE. 2011;6:e24336.CrossRefPubMedPubMedCentral
16.
go back to reference Chihanga S, Haque U, Chanda E, Mosweunyane T, Moakofhi K, Jibril HB, et al. Malaria elimination in Botswana, 2012–2014: achievements and challenges. Parasit Vectors. 2016;9:99.CrossRefPubMedPubMedCentral Chihanga S, Haque U, Chanda E, Mosweunyane T, Moakofhi K, Jibril HB, et al. Malaria elimination in Botswana, 2012–2014: achievements and challenges. Parasit Vectors. 2016;9:99.CrossRefPubMedPubMedCentral
17.
go back to reference Chanda E, Ameneshewa B, Angula HA, Iitula I, Uusiku P, Trune D, et al. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia. Malar J. 2015;14:302.CrossRefPubMedPubMedCentral Chanda E, Ameneshewa B, Angula HA, Iitula I, Uusiku P, Trune D, et al. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia. Malar J. 2015;14:302.CrossRefPubMedPubMedCentral
19.
go back to reference WHO. World malaria report 2016. Geneva: World Health Organization; 2016. WHO. World malaria report 2016. Geneva: World Health Organization; 2016.
20.
go back to reference WHO. Global insecticide use for vector-borne disease control. Fourth edition. WHO/HTM/NTD/WHOPES/GCDPP/2009.6. Geneva: World Health Organization; 2009. WHO. Global insecticide use for vector-borne disease control. Fourth edition. WHO/HTM/NTD/WHOPES/GCDPP/2009.6. Geneva: World Health Organization; 2009.
22.
go back to reference Hargreaves K, Koekemoer LL, Brooke B, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000;14:181–9.CrossRefPubMed Hargreaves K, Koekemoer LL, Brooke B, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000;14:181–9.CrossRefPubMed
23.
go back to reference Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed
25.
go back to reference Coleman M, Foster GM, Deb R, Singh RP, Ismail HM, Shivam P, et al. DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India. Proc Natl Acad Sci USA. 2015;112:8573–8.CrossRefPubMedPubMedCentral Coleman M, Foster GM, Deb R, Singh RP, Ismail HM, Shivam P, et al. DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India. Proc Natl Acad Sci USA. 2015;112:8573–8.CrossRefPubMedPubMedCentral
26.
go back to reference Dhiman RC, Yadav RS. Insecticide resistance in phlebotomine sandflies in Southeast Asia with emphasis on the Indian subcontinent. Infect Dis Poverty. 2016;5:106.CrossRefPubMedPubMedCentral Dhiman RC, Yadav RS. Insecticide resistance in phlebotomine sandflies in Southeast Asia with emphasis on the Indian subcontinent. Infect Dis Poverty. 2016;5:106.CrossRefPubMedPubMedCentral
27.
go back to reference UNEP. Report of the DDT expert group on the assessment of the production and use of DDT and its alternatives for disease vector control. Geneva: Secretariat of the Stockholm Convention, United Nations Development Programme; 2017. UNEP. Report of the DDT expert group on the assessment of the production and use of DDT and its alternatives for disease vector control. Geneva: Secretariat of the Stockholm Convention, United Nations Development Programme; 2017.
28.
go back to reference Mnzava AP, Macdonald MB, Knox TB, Temu EA, Shiff CJ. Malaria vector control at crossroads: public health entomology and the drive to elimination. Trans R Soc Trop Med Hyg. 2014;108:550–4.CrossRefPubMed Mnzava AP, Macdonald MB, Knox TB, Temu EA, Shiff CJ. Malaria vector control at crossroads: public health entomology and the drive to elimination. Trans R Soc Trop Med Hyg. 2014;108:550–4.CrossRefPubMed
29.
go back to reference Kleinschmidt I, Mnzava AP, Kafy HT, Mbogo C, Bashir AI, Bigoga J, et al. Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation. Malar J. 2015;14:282.CrossRefPubMedPubMedCentral Kleinschmidt I, Mnzava AP, Kafy HT, Mbogo C, Bashir AI, Bigoga J, et al. Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation. Malar J. 2015;14:282.CrossRefPubMedPubMedCentral
30.
go back to reference WHO. Larval source management: a supplementary measure for malaria vector control: an operational manual. Geneva: World Health Organization; 2013. WHO. Larval source management: a supplementary measure for malaria vector control: an operational manual. Geneva: World Health Organization; 2013.
31.
go back to reference Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRefPubMedPubMedCentral Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRefPubMedPubMedCentral
32.
go back to reference WHO. A toolkit for integrated vector management in sub-Saharan Africa. WHO/HTM/NTD/VEM/2016.02. Geneva: World Health Organization; 2016. WHO. A toolkit for integrated vector management in sub-Saharan Africa. WHO/HTM/NTD/VEM/2016.02. Geneva: World Health Organization; 2016.
33.
go back to reference Gueye CS, Newby G, Gosling RD, Whittaker MA, Chandramohan D, Slutsker L, et al. Strategies and approaches to vector control in nine malaria-eliminating countries: a cross-case study analysis. Malar J. 2016;15:2.CrossRef Gueye CS, Newby G, Gosling RD, Whittaker MA, Chandramohan D, Slutsker L, et al. Strategies and approaches to vector control in nine malaria-eliminating countries: a cross-case study analysis. Malar J. 2016;15:2.CrossRef
34.
go back to reference Matthews G, Zaim M, Yadav RS, Soares A, Hii J, Ameneshewa B, et al. Status of legislation and regulatory control of public health pesticides in countries endemic with or at risk of major vector-borne diseases. Environ Health Perspect. 2011;119:1517–22.CrossRefPubMedPubMedCentral Matthews G, Zaim M, Yadav RS, Soares A, Hii J, Ameneshewa B, et al. Status of legislation and regulatory control of public health pesticides in countries endemic with or at risk of major vector-borne diseases. Environ Health Perspect. 2011;119:1517–22.CrossRefPubMedPubMedCentral
35.
go back to reference van den Berg H, Hii J, Soares A, Mnzava A, Ameneshewa B, Dash AP, et al. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases. Malar J. 2011;10:125.CrossRefPubMedPubMedCentral van den Berg H, Hii J, Soares A, Mnzava A, Ameneshewa B, Dash AP, et al. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases. Malar J. 2011;10:125.CrossRefPubMedPubMedCentral
Metadata
Title
Global trends in the production and use of DDT for control of malaria and other vector-borne diseases
Authors
Henk van den Berg
Gamini Manuweera
Flemming Konradsen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2050-2

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue