Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

A stochastic model for the probability of malaria extinction by mass drug administration

Authors: Peter Pemberton-Ross, Nakul Chitnis, Emilie Pothin, Thomas A. Smith

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Mass drug administration (MDA) has been proposed as an intervention to achieve local extinction of malaria. Although its effect on the reproduction number is short lived, extinction may subsequently occur in a small population due to stochastic fluctuations. This paper examines how the probability of stochastic extinction depends on population size, MDA coverage and the reproduction number under control, R c . A simple compartmental model is developed which is used to compute the probability of extinction using probability generating functions. The expected time to extinction in small populations after MDA for various scenarios in this model is calculated analytically.

Results

The results indicate that mass drug administration (Firstly, R c must be sustained at R c  < 1.2 to avoid the rapid re-establishment of infections in the population. Secondly, the MDA must produce effective cure rates of >95% to have a non-negligible probability of successful elimination. Stochastic fluctuations only significantly affect the probability of extinction in populations of about 1000 individuals or less. The expected time to extinction via stochastic fluctuation is less than 10 years only in populations less than about 150 individuals. Clustering of secondary infections and of MDA distribution both contribute positively to the potential probability of success, indicating that MDA would most effectively be administered at the household level.

Conclusions

There are very limited circumstances in which MDA will lead to local malaria elimination with a substantial probability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kastner RJ, Stone CM, Steinmann P, Tanner M, Tediosi F. What is needed to eradicate lymphatic filariasis? A model-based assessment on the impact of scaling up mass drug administration programs. PLoS Negl Trop Dis. 2015;9:e0004147.CrossRefPubMedPubMedCentral Kastner RJ, Stone CM, Steinmann P, Tanner M, Tediosi F. What is needed to eradicate lymphatic filariasis? A model-based assessment on the impact of scaling up mass drug administration programs. PLoS Negl Trop Dis. 2015;9:e0004147.CrossRefPubMedPubMedCentral
2.
go back to reference Kim YE, Sicuri E, Tediosi F. Financial and economic costs of the elimination and eradication of onchocerciasis (River Blindness) in Africa. PLoS Negl Trop Dis. 2015;9:e0004056.CrossRefPubMedPubMedCentral Kim YE, Sicuri E, Tediosi F. Financial and economic costs of the elimination and eradication of onchocerciasis (River Blindness) in Africa. PLoS Negl Trop Dis. 2015;9:e0004056.CrossRefPubMedPubMedCentral
3.
go back to reference Kaneko A, Taleo G, Kalkoa M, Yamar S, Kobayakawa T, Bjorkman A. Malaria eradication on islands. Lancet. 2000;356:1560–4.CrossRefPubMed Kaneko A, Taleo G, Kalkoa M, Yamar S, Kobayakawa T, Bjorkman A. Malaria eradication on islands. Lancet. 2000;356:1560–4.CrossRefPubMed
4.
go back to reference Poirot E, Skarbinski J, Sinclair D, Kachur SP, Slutsker L, Hwang J. Mass drug administration for malaria. Cochrane Database Syst Rev. 2013;12:46. Poirot E, Skarbinski J, Sinclair D, Kachur SP, Slutsker L, Hwang J. Mass drug administration for malaria. Cochrane Database Syst Rev. 2013;12:46.
5.
go back to reference Hsiang MS, Hwang J, Tao AR, Liu Y, Bennett A, Shanks GD, et al. Mass drug administration for the control and elimination of Plasmodium vivax malaria: an ecological study from Jiangsu province. China. Malar J. 2013;12:383.CrossRefPubMed Hsiang MS, Hwang J, Tao AR, Liu Y, Bennett A, Shanks GD, et al. Mass drug administration for the control and elimination of Plasmodium vivax malaria: an ecological study from Jiangsu province. China. Malar J. 2013;12:383.CrossRefPubMed
6.
go back to reference Tiono AB, Ouedraogo A, Ogutu B, Diarra A, Coulibaly S, Gansane A, et al. A controlled, parallel, cluster-randomized trial of community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar J. 2013;12:79.CrossRefPubMedPubMedCentral Tiono AB, Ouedraogo A, Ogutu B, Diarra A, Coulibaly S, Gansane A, et al. A controlled, parallel, cluster-randomized trial of community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar J. 2013;12:79.CrossRefPubMedPubMedCentral
7.
go back to reference World Health Organisation. Recommendations on the role of mass drug administration, mass screening and treatment, and focal screening and treatment for malaria. WHO/HTM/GMP/2015.8. Geneva: World Health Organisation; 2015. World Health Organisation. Recommendations on the role of mass drug administration, mass screening and treatment, and focal screening and treatment for malaria. WHO/HTM/GMP/2015.8. Geneva: World Health Organisation; 2015.
8.
go back to reference Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1991. Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1991.
9.
go back to reference Brady OJ, Slater HC, Pemberton-Ross P, Wenger E, Maude RJ, Ghani AC, et al. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. Lancet Glob Health. 2017;5:e680–7.CrossRefPubMedPubMedCentral Brady OJ, Slater HC, Pemberton-Ross P, Wenger E, Maude RJ, Ghani AC, et al. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. Lancet Glob Health. 2017;5:e680–7.CrossRefPubMedPubMedCentral
10.
go back to reference Nasell I. A new look at the critical community size for childhood infections. Theor Popul Biol. 2005;67:203–16.CrossRefPubMed Nasell I. A new look at the critical community size for childhood infections. Theor Popul Biol. 2005;67:203–16.CrossRefPubMed
11.
12.
go back to reference Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding infectious disease dynamics. Princeton: Princeton University Press; 2013. Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding infectious disease dynamics. Princeton: Princeton University Press; 2013.
13.
go back to reference Karlin S, Taylor HM. A first course in stochastic processes. New York: Academic Press; 1975. Karlin S, Taylor HM. A first course in stochastic processes. New York: Academic Press; 1975.
14.
go back to reference Nåsell I. The quasi-stationary distribution of the closed endemic sis model. Adv Appl Probab. 1996;28(3):895–932.CrossRef Nåsell I. The quasi-stationary distribution of the closed endemic sis model. Adv Appl Probab. 1996;28(3):895–932.CrossRef
15.
go back to reference Metcalf CJ, Hampson K, Tatem AJ, Grenfell BT, Bjornstad ON. Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella and whooping cough. PLoS ONE. 2013;8:e74696.CrossRefPubMedPubMedCentral Metcalf CJ, Hampson K, Tatem AJ, Grenfell BT, Bjornstad ON. Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella and whooping cough. PLoS ONE. 2013;8:e74696.CrossRefPubMedPubMedCentral
16.
go back to reference Okell L, Slater H, Ghani A, Pemberton-Ross P, Smith TA, Chitnis N, et al. Consensus modelling evidence to support the design of mass drug administration programmes. Geneva: World Health Organization, Malaria Policy Advisory Committee Meeting; 2015. Okell L, Slater H, Ghani A, Pemberton-Ross P, Smith TA, Chitnis N, et al. Consensus modelling evidence to support the design of mass drug administration programmes. Geneva: World Health Organization, Malaria Policy Advisory Committee Meeting; 2015.
17.
go back to reference Newby G, Hwang J, Koita K, Chen I, Greenwood B, von Seidlein L, et al. Review of mass drug administration for malaria and its operational challenges. Am J Trop Med Hyg. 2015;93:125–34.CrossRefPubMedPubMedCentral Newby G, Hwang J, Koita K, Chen I, Greenwood B, von Seidlein L, et al. Review of mass drug administration for malaria and its operational challenges. Am J Trop Med Hyg. 2015;93:125–34.CrossRefPubMedPubMedCentral
18.
go back to reference Stolk WA, Swaminathan S, van Oortmarssen GJ, Das PK, Habbema JD. Prospects for elimination of bancroftian filariasis by mass drug treatment in Pondicherry, India: a simulation study. J Infect Dis. 2003;188:1371–81.CrossRefPubMed Stolk WA, Swaminathan S, van Oortmarssen GJ, Das PK, Habbema JD. Prospects for elimination of bancroftian filariasis by mass drug treatment in Pondicherry, India: a simulation study. J Infect Dis. 2003;188:1371–81.CrossRefPubMed
19.
go back to reference Babu BV, Kar SK. Coverage, compliance and some operational issues of mass drug administration during the programme to eliminate lymphatic filariasis in Orissa, India. Trop Med Int Health. 2004;9:702–9.CrossRefPubMed Babu BV, Kar SK. Coverage, compliance and some operational issues of mass drug administration during the programme to eliminate lymphatic filariasis in Orissa, India. Trop Med Int Health. 2004;9:702–9.CrossRefPubMed
20.
go back to reference Molineaux L, Gramiccia G. The Garki Project. Geneva: World Health Organisation; 1980. Molineaux L, Gramiccia G. The Garki Project. Geneva: World Health Organisation; 1980.
21.
go back to reference von Seidlein L, Greenwood BM. Mass administrations of antimalarial drugs. Trends Parasitol. 2003;19:452–60.CrossRef von Seidlein L, Greenwood BM. Mass administrations of antimalarial drugs. Trends Parasitol. 2003;19:452–60.CrossRef
22.
go back to reference Maude RJ, Socheat D, Nguon C, Saroth P, Dara P, Li G, et al. Optimising strategies for Plasmodium falciparum malaria elimination in Cambodia: primaquine, mass drug administration and artemisinin resistance. PLoS ONE. 2012;7:e37166.CrossRefPubMedPubMedCentral Maude RJ, Socheat D, Nguon C, Saroth P, Dara P, Li G, et al. Optimising strategies for Plasmodium falciparum malaria elimination in Cambodia: primaquine, mass drug administration and artemisinin resistance. PLoS ONE. 2012;7:e37166.CrossRefPubMedPubMedCentral
23.
go back to reference Griffin JT. The Interaction between seasonality and pulsed interventions against malaria in their effects on the reproduction number. PLoS Comput Biol. 2015;11:e1004057.CrossRefPubMedPubMedCentral Griffin JT. The Interaction between seasonality and pulsed interventions against malaria in their effects on the reproduction number. PLoS Comput Biol. 2015;11:e1004057.CrossRefPubMedPubMedCentral
24.
go back to reference Okell LC, Griffin JT, Kleinschmidt I, Hollingsworth TD, Churcher TS, White MJ, et al. The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS ONE. 2011;6:e20179.CrossRefPubMedPubMedCentral Okell LC, Griffin JT, Kleinschmidt I, Hollingsworth TD, Churcher TS, White MJ, et al. The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS ONE. 2011;6:e20179.CrossRefPubMedPubMedCentral
Metadata
Title
A stochastic model for the probability of malaria extinction by mass drug administration
Authors
Peter Pemberton-Ross
Nakul Chitnis
Emilie Pothin
Thomas A. Smith
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2010-x

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue