Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Tryptophan-rich domains of Plasmodium falciparum SURFIN4.2 and Plasmodium vivax PvSTP2 interact with membrane skeleton of red blood cell

Authors: Xiaotong Zhu, Yang He, Yifan Liang, Osamu Kaneko, Liwang Cui, Yaming Cao

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Plasmodium falciparum dramatically alters the morphology and properties of the infected red blood cells (iRBCs). A large group of exported proteins participate in these parasite-host interactions occurring at the iRBC membrane skeleton. SURFIN4.2 is one of iRBC surface protein that belongs to surface-associated interspersed protein (SURFIN) family. Although the intracellular tryptophan-rich domain (WRD) was proposed to be important for the translocation of SURFINs from Maurer’s clefts to iRBC surface, the molecular basis of this observation has yet to be defined. The WRDs of P. falciparum SURFIN proteins and their orthologous Plasmodium vivax subtelomeric transmembrane proteins (PvSTPs) show homology to the intracellular regions of PfEMP1 and Pf332, both of which are involved in RBC membrane skeleton interactions, and contribute to malaria pathology.

Methods

Two transfected lines expressing recombinant SURFINs (NTC-GFP and NTC-4.2WRD2-GFP) of the 3D7 sequence were generated by transfection in P. falciparum. In vitro binding assays were performed by using recombinant WRDs of SURFIN4.2/PvSTP2 and inside-out vesicles (IOVs). The interactions between the recombinant WRDs of SURFIN4.2/PvSTP2 with actin and spectrin were evaluated by the actin spin down assay and an enzyme-linked immunosorbent assay based binding assays, respectively.

Results

The recombinant SURFINs (NTC-4.2WRD2-GFP), in which the second WRD from SURFIN4.2 was added back to NTC-GFP, show diffused pattern of fluorescence in the iRBC cytosol. Furthermore, WRDs of SURFIN4.2/PvSTP2 were found to directly interact with the IOVs of RBC, with binding affinities ranging from 0.26 to 0.68 μM, values that are comparable to other reported parasite proteins that bind to the RBC membrane skeleton. Further experiments revealed that the second WRD of SURFIN4.2 bound to F-actin (K d = 5.16 μM) and spectrin (K d = 0.51 μM).

Conclusions

Because PfEMP1 and Pf332 also bind to actin and/or spectrin, the authors propose that the interaction between WRD and RBC membrane skeleton might be a common feature of WRD-containing proteins and may be important for the translocation of these proteins from Maurer’s clefts to the iRBC surface. The findings suggest a conserved mechanism of host-parasite interactions and targeting this interaction may disrupt the iRBC surface exposure of Plasmodium virulence-related proteins.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World Malaria Report. Geneva: World Health Organization; 2015. p. 2015. WHO. World Malaria Report. Geneva: World Health Organization; 2015. p. 2015.
2.
go back to reference McHugh E, Batinovic S, Hanssen E, McMillan PJ, Kenny S, Griffin MD, et al. A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking. Mol Microbiol. 2015;98:1101–14.CrossRefPubMedPubMedCentral McHugh E, Batinovic S, Hanssen E, McMillan PJ, Kenny S, Griffin MD, et al. A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking. Mol Microbiol. 2015;98:1101–14.CrossRefPubMedPubMedCentral
3.
go back to reference Dixon MW, Kenny S, McMillan PJ, Hanssen E, Trenholme KR, Gardiner DL, et al. Genetic ablation of a Maurer’s cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol Microbiol. 2011;81:982–93.CrossRefPubMed Dixon MW, Kenny S, McMillan PJ, Hanssen E, Trenholme KR, Gardiner DL, et al. Genetic ablation of a Maurer’s cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol Microbiol. 2011;81:982–93.CrossRefPubMed
4.
go back to reference Oh SS, Voigt S, Fisher D, Yi SJ, LeRoy PJ, Derick LH, et al. Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Mol Biochem Parasitol. 2000;108:237–47.CrossRefPubMed Oh SS, Voigt S, Fisher D, Yi SJ, LeRoy PJ, Derick LH, et al. Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Mol Biochem Parasitol. 2000;108:237–47.CrossRefPubMed
5.
go back to reference Mbengue A, Vialla E, Berry L, Fall G, Audiger N, Demettre-Verceil E, et al. New export pathway in Plasmodium falciparum-infected erythrocytes: role of the parasite group ii chaperonin. PfTRiC. Traffic. 2015;16:461–75.CrossRefPubMed Mbengue A, Vialla E, Berry L, Fall G, Audiger N, Demettre-Verceil E, et al. New export pathway in Plasmodium falciparum-infected erythrocytes: role of the parasite group ii chaperonin. PfTRiC. Traffic. 2015;16:461–75.CrossRefPubMed
6.
go back to reference Alexandre JS, Yahata K, Kawai S, Torii M, Kaneko O. PEXEL-independent trafficking of Plasmodium falciparum SURFIN4.2 to the parasite-infected red blood cell and Maurer’s clefts. Parasitol Int. 2011;60:313–20.CrossRefPubMed Alexandre JS, Yahata K, Kawai S, Torii M, Kaneko O. PEXEL-independent trafficking of Plasmodium falciparum SURFIN4.2 to the parasite-infected red blood cell and Maurer’s clefts. Parasitol Int. 2011;60:313–20.CrossRefPubMed
7.
go back to reference Waller KL, Stubberfield LM, Dubljevic V, Nunomura W, An X, Mason AJ, et al. Interactions of Plasmodium falciparum erythrocyte membrane protein 3 with the red blood cell membrane skeleton. Biochim Biophys Acta. 2007;1768:2145–56.CrossRefPubMedPubMedCentral Waller KL, Stubberfield LM, Dubljevic V, Nunomura W, An X, Mason AJ, et al. Interactions of Plasmodium falciparum erythrocyte membrane protein 3 with the red blood cell membrane skeleton. Biochim Biophys Acta. 2007;1768:2145–56.CrossRefPubMedPubMedCentral
8.
go back to reference Chan JA, Howell KB, Langer C, Maier AG, Hasang W, Rogerson SJ, et al. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell Mol Life Sci. 2016;73:4141–58.CrossRefPubMedPubMedCentral Chan JA, Howell KB, Langer C, Maier AG, Hasang W, Rogerson SJ, et al. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell Mol Life Sci. 2016;73:4141–58.CrossRefPubMedPubMedCentral
9.
go back to reference Rug M, Prescott SW, Fernandez KM, Cooke BM, Cowman AF. The role of KAHRP domains in knob formation and cytoadherence of P. falciparum-infected human erythrocytes. Blood. 2006;108:370–8.CrossRefPubMedPubMedCentral Rug M, Prescott SW, Fernandez KM, Cooke BM, Cowman AF. The role of KAHRP domains in knob formation and cytoadherence of P. falciparum-infected human erythrocytes. Blood. 2006;108:370–8.CrossRefPubMedPubMedCentral
10.
go back to reference Kats LM, Proellocks NI, Buckingham DW, Blanc L, Hale J, Guo X, et al. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells. Biochim Biophys Acta. 2015;1848:1619–28.CrossRefPubMedPubMedCentral Kats LM, Proellocks NI, Buckingham DW, Blanc L, Hale J, Guo X, et al. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells. Biochim Biophys Acta. 2015;1848:1619–28.CrossRefPubMedPubMedCentral
11.
go back to reference Da Silva E, Foley M, Dluzewski AR, Murray LJ, Anders RF, Tilley L. The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Mol Biochem Parasitol. 1994;66:59–69.CrossRefPubMed Da Silva E, Foley M, Dluzewski AR, Murray LJ, Anders RF, Tilley L. The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Mol Biochem Parasitol. 1994;66:59–69.CrossRefPubMed
12.
go back to reference Waller KL, Stubberfield LM, Dubljevic V, Buckingham DW, Mohandas N, Coppel RL, et al. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. Biochim Biophys Acta. 2010;1798:861–71.CrossRefPubMedPubMedCentral Waller KL, Stubberfield LM, Dubljevic V, Buckingham DW, Mohandas N, Coppel RL, et al. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. Biochim Biophys Acta. 2010;1798:861–71.CrossRefPubMedPubMedCentral
13.
go back to reference Black CG, Proellocks NI, Kats LM, Cooke BM, Mohandas N, Coppel RL. In vivo studies support the role of trafficking and cytoskeletal-binding motifs in the interaction of MESA with the membrane skeleton of Plasmodium falciparum-infected red blood cells. Mol Biochem Parasitol. 2008;160:143–7.CrossRefPubMedPubMedCentral Black CG, Proellocks NI, Kats LM, Cooke BM, Mohandas N, Coppel RL. In vivo studies support the role of trafficking and cytoskeletal-binding motifs in the interaction of MESA with the membrane skeleton of Plasmodium falciparum-infected red blood cells. Mol Biochem Parasitol. 2008;160:143–7.CrossRefPubMedPubMedCentral
14.
go back to reference Winter G, Kawai S, Haeggstrom M, Kaneko O, von Euler A, Kawazu S, et al. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med. 2005;201:1853–63.CrossRefPubMedPubMedCentral Winter G, Kawai S, Haeggstrom M, Kaneko O, von Euler A, Kawazu S, et al. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med. 2005;201:1853–63.CrossRefPubMedPubMedCentral
15.
go back to reference Sungkapong T, Culleton R, Yahata K, Tachibana M, Ruengveerayuth R, Udomsangpetch R, et al. Humoral immune responses to Plasmodium vivax subtelomeric transmembrane proteins in Thailand. Southeast Asian J Trop Med Public Health. 2011;42:1313–21.PubMed Sungkapong T, Culleton R, Yahata K, Tachibana M, Ruengveerayuth R, Udomsangpetch R, et al. Humoral immune responses to Plasmodium vivax subtelomeric transmembrane proteins in Thailand. Southeast Asian J Trop Med Public Health. 2011;42:1313–21.PubMed
16.
go back to reference Chan JA, Fowkes FJ, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci. 2014;71:3633–57.CrossRefPubMedPubMedCentral Chan JA, Fowkes FJ, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci. 2014;71:3633–57.CrossRefPubMedPubMedCentral
17.
go back to reference Ansari FA, Kumar N, Bala Subramanyam M, Gnanamani M, Ramachandran S. MAAP: malarial adhesins and adhesin-like proteins predictor. Proteins. 2008;70:659–66.CrossRefPubMed Ansari FA, Kumar N, Bala Subramanyam M, Gnanamani M, Ramachandran S. MAAP: malarial adhesins and adhesin-like proteins predictor. Proteins. 2008;70:659–66.CrossRefPubMed
18.
go back to reference Zhu X, Yahata K, Alexandre JS, Tsuboi T, Kaneko O. The N-terminal segment of Plasmodium falciparum SURFIN4.1 is required for its trafficking to the red blood cell cytosol through the endoplasmic reticulum. Parasitol Int. 2013;62:215–29.CrossRefPubMed Zhu X, Yahata K, Alexandre JS, Tsuboi T, Kaneko O. The N-terminal segment of Plasmodium falciparum SURFIN4.1 is required for its trafficking to the red blood cell cytosol through the endoplasmic reticulum. Parasitol Int. 2013;62:215–29.CrossRefPubMed
19.
go back to reference Kagaya W, Miyazaki S, Yahata K, Ohta N, Kaneko O. The cytoplasmic region of Plasmodium falciparum SURFIN4.2 is required for transport from Maurer’s clefts to the red blood cell surface. Trop Med Health. 2015;43:265–72.CrossRefPubMedPubMedCentral Kagaya W, Miyazaki S, Yahata K, Ohta N, Kaneko O. The cytoplasmic region of Plasmodium falciparum SURFIN4.2 is required for transport from Maurer’s clefts to the red blood cell surface. Trop Med Health. 2015;43:265–72.CrossRefPubMedPubMedCentral
20.
go back to reference Waller KL, Cooke BM, Nunomura W, Mohandas N, Coppel RL. Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). J Biol Chem. 1999;274:23808–13.CrossRefPubMed Waller KL, Cooke BM, Nunomura W, Mohandas N, Coppel RL. Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). J Biol Chem. 1999;274:23808–13.CrossRefPubMed
21.
go back to reference Ganguly AK, Ranjan P, Kumar A, Bhavesh NS. Dynamic association of PfEMP1 and KAHRP in knobs mediates cytoadherence during Plasmodium invasion. Sci Rep. 2015;5:8617.CrossRefPubMedPubMedCentral Ganguly AK, Ranjan P, Kumar A, Bhavesh NS. Dynamic association of PfEMP1 and KAHRP in knobs mediates cytoadherence during Plasmodium invasion. Sci Rep. 2015;5:8617.CrossRefPubMedPubMedCentral
23.
go back to reference Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;37:13–21.CrossRef Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;37:13–21.CrossRef
24.
go back to reference Pei X, An X, Guo X, Tarnawski M, Coppel R, Mohandas N. Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J Biol Chem. 2005;280:31166–71.CrossRefPubMed Pei X, An X, Guo X, Tarnawski M, Coppel R, Mohandas N. Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J Biol Chem. 2005;280:31166–71.CrossRefPubMed
25.
go back to reference Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:W597–603.CrossRefPubMedPubMedCentral Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:W597–603.CrossRefPubMedPubMedCentral
26.
go back to reference Spycher C, Klonis N, Spielmann T, Kump E, Steiger S, Tilley L, et al. MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localizes to the Maurer’s clefts. J Biol Chem. 2003;278:35373–83.CrossRefPubMed Spycher C, Klonis N, Spielmann T, Kump E, Steiger S, Tilley L, et al. MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localizes to the Maurer’s clefts. J Biol Chem. 2003;278:35373–83.CrossRefPubMed
27.
go back to reference de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol. 2016;14:494–507.CrossRefPubMed de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol. 2016;14:494–507.CrossRefPubMed
28.
go back to reference Bachmann A, Scholz JA, Janssen M, Klinkert MQ, Tannich E, Bruchhaus I, et al. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malar J. 2015;14:274.CrossRefPubMedPubMedCentral Bachmann A, Scholz JA, Janssen M, Klinkert MQ, Tannich E, Bruchhaus I, et al. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malar J. 2015;14:274.CrossRefPubMedPubMedCentral
29.
go back to reference Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, et al. The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood. 2007;110:1036–42.CrossRefPubMedPubMedCentral Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, et al. The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood. 2007;110:1036–42.CrossRefPubMedPubMedCentral
30.
go back to reference Waller KL, Nunomura W, An X, Cooke BM, Mohandas N, Coppel RL. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood. 2003;102:1911–4.CrossRefPubMed Waller KL, Nunomura W, An X, Cooke BM, Mohandas N, Coppel RL. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood. 2003;102:1911–4.CrossRefPubMed
31.
go back to reference Pei X, Guo X, Coppel R, Mohandas N, An X. Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) destabilizes erythrocyte membrane skeleton. J Biol Chem. 2007;282:26754–8.CrossRefPubMed Pei X, Guo X, Coppel R, Mohandas N, An X. Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) destabilizes erythrocyte membrane skeleton. J Biol Chem. 2007;282:26754–8.CrossRefPubMed
32.
go back to reference Olshina MA, Angrisano F, Marapana DS, Riglar DT, Bane K, Wong W, et al. Plasmodium falciparum coronin organizes arrays of parallel actin filaments potentially guiding directional motility in invasive malaria parasites. Malar J. 2015;14:280.CrossRefPubMedPubMedCentral Olshina MA, Angrisano F, Marapana DS, Riglar DT, Bane K, Wong W, et al. Plasmodium falciparum coronin organizes arrays of parallel actin filaments potentially guiding directional motility in invasive malaria parasites. Malar J. 2015;14:280.CrossRefPubMedPubMedCentral
33.
go back to reference Spycher C, Rug M, Pachlatko E, Hanssen E, Ferguson D, Cowman AF, et al. The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Mol Microbiol. 2008;68:1300–14.CrossRefPubMed Spycher C, Rug M, Pachlatko E, Hanssen E, Ferguson D, Cowman AF, et al. The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Mol Microbiol. 2008;68:1300–14.CrossRefPubMed
34.
go back to reference Kriek N, Tilley L, Horrocks P, Pinches R, Elford BC, Ferguson DJ, et al. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol Microbiol. 2003;50:1215–27.CrossRefPubMed Kriek N, Tilley L, Horrocks P, Pinches R, Elford BC, Ferguson DJ, et al. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol Microbiol. 2003;50:1215–27.CrossRefPubMed
35.
go back to reference Saridaki T, Frohlich KS, Braun-Breton C, Lanzer M. Export of PfSBP1 to the Plasmodium falciparum Maurer’s clefts. Traffic. 2009;10:137–52.CrossRefPubMed Saridaki T, Frohlich KS, Braun-Breton C, Lanzer M. Export of PfSBP1 to the Plasmodium falciparum Maurer’s clefts. Traffic. 2009;10:137–52.CrossRefPubMed
36.
go back to reference Haase S, Herrmann S, Gruring C, Heiber A, Jansen PW, Langer C, et al. Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2. Mol Microbiol. 2009;71:1003–17.CrossRefPubMed Haase S, Herrmann S, Gruring C, Heiber A, Jansen PW, Langer C, et al. Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2. Mol Microbiol. 2009;71:1003–17.CrossRefPubMed
37.
go back to reference Dixon MW, Hawthorne PL, Spielmann T, Anderson KL, Trenholme KR, Gardiner DL. Targeting of the ring exported protein 1 to the Maurer’s clefts is mediated by a two-phase process. Traffic. 2008;9:1316–26.CrossRefPubMed Dixon MW, Hawthorne PL, Spielmann T, Anderson KL, Trenholme KR, Gardiner DL. Targeting of the ring exported protein 1 to the Maurer’s clefts is mediated by a two-phase process. Traffic. 2008;9:1316–26.CrossRefPubMed
38.
go back to reference Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol. 2010;170:65–73.CrossRefPubMed Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol. 2010;170:65–73.CrossRefPubMed
39.
go back to reference Ansari HR, Templeton TJ, Subudhi AK, Ramaprasad A, Tang J, Lu F, et al. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species. Int J Parasitol. 2016;46:685–96.CrossRefPubMed Ansari HR, Templeton TJ, Subudhi AK, Ramaprasad A, Tang J, Lu F, et al. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species. Int J Parasitol. 2016;46:685–96.CrossRefPubMed
40.
go back to reference Frech C, Chen N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics. 2013;14:427.CrossRefPubMedPubMedCentral Frech C, Chen N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics. 2013;14:427.CrossRefPubMedPubMedCentral
41.
go back to reference Diaz SA, Martin SR, Grainger M, Howell SA, Green JL, Holder AA. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization. Mol Biochem Parasitol. 2014;197:9–14.CrossRefPubMedPubMedCentral Diaz SA, Martin SR, Grainger M, Howell SA, Green JL, Holder AA. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization. Mol Biochem Parasitol. 2014;197:9–14.CrossRefPubMedPubMedCentral
42.
go back to reference Kun JF, Waller KL, Coppel RL. Plasmodium falciparum: structural and functional domains of the mature-parasite-infected erythrocyte surface antigen. Exp Parasitol. 1999;91:258–67.CrossRefPubMed Kun JF, Waller KL, Coppel RL. Plasmodium falciparum: structural and functional domains of the mature-parasite-infected erythrocyte surface antigen. Exp Parasitol. 1999;91:258–67.CrossRefPubMed
43.
go back to reference Bennett V, Gilligan DM. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol. 1993;9:27–66.CrossRefPubMed Bennett V, Gilligan DM. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol. 1993;9:27–66.CrossRefPubMed
Metadata
Title
Tryptophan-rich domains of Plasmodium falciparum SURFIN4.2 and Plasmodium vivax PvSTP2 interact with membrane skeleton of red blood cell
Authors
Xiaotong Zhu
Yang He
Yifan Liang
Osamu Kaneko
Liwang Cui
Yaming Cao
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1772-5

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue