Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes

Authors: Anna Bachmann, Judith Anna Marie Scholz, Marthe Janßen, Mo-Quen Klinkert, Egbert Tannich, Iris Bruchhaus, Michaela Petter

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Variant surface antigens (VSA) exposed on the membrane of Plasmodium falciparum infected erythrocytes mediate immune evasion and are important pathogenicity factors in malaria disease. In addition to the well-studied PfEMP1, the small VSA families RIFIN, STEVOR and PfMC-2TM are assumed to play a role in this process.

Methods

This study presents a detailed comparative characterization of the localization, membrane topology and extraction profile across the life cycle of various members of these protein families employing confocal microscopy, immunoelectron microscopy and immunoblots.

Results

The presented data reveal a clear association of variants of the RIFIN, STEVOR and PfMC-2TM proteins with the host cell membrane and topological studies indicate that the semi-conserved N-terminal region of RIFINs and some STEVOR proteins is exposed at the erythrocyte surface. At the Maurer’s clefts, the semi-conserved N-terminal region as well as the variable stretch of RIFINs appears to point to the lumen away from the erythrocyte cytoplasm. These results challenge the previously proposed two transmembrane topology model for the RIFIN and STEVOR protein families and suggest that only one hydrophobic region spans the membrane. In contrast, PfMC-2TM proteins indeed seem to be anchored by two hydrophobic stretches in the host cell membrane exposing just a few, variable amino acids at the surface of the host cell.

Conclusion

Together, the host cell surface exposure and topology of RIFIN and STEVOR proteins suggests members of these protein families may indeed be involved in immune evasion of the infected erythrocyte, whereas members of the PfMC-2TM family seem to bear different functions in parasite biology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bruce-Chwatt LJ (1963) A longitudinal survey of natural malaria infection in a group of West African adults. West Afr Med J 12:199–217PubMed Bruce-Chwatt LJ (1963) A longitudinal survey of natural malaria infection in a group of West African adults. West Afr Med J 12:199–217PubMed
2.
go back to reference McGregor IA (1974) Mechanisms of acquired immunity and epidemiological patterns of antibody responses in malaria in man. Bull World Health Organ 50:259–266PubMedCentralPubMed McGregor IA (1974) Mechanisms of acquired immunity and epidemiological patterns of antibody responses in malaria in man. Bull World Health Organ 50:259–266PubMedCentralPubMed
3.
go back to reference Ferreira MU, da Silva Nunes M, Wunderlich G (2004) Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol 11:987–995PubMedCentralPubMed Ferreira MU, da Silva Nunes M, Wunderlich G (2004) Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol 11:987–995PubMedCentralPubMed
4.
go back to reference Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRef Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRef
5.
go back to reference Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K et al (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357:689–692PubMedCentralPubMedCrossRef Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K et al (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357:689–692PubMedCentralPubMedCrossRef
6.
go back to reference Horrocks P, Pinches R, Christodoulou Z, Kyes SA, Newbold CI (2004) Variable var transition rates underlie antigenic variation in malaria. Proc Natl Acad Sci USA 101:11129–11134PubMedCentralPubMedCrossRef Horrocks P, Pinches R, Christodoulou Z, Kyes SA, Newbold CI (2004) Variable var transition rates underlie antigenic variation in malaria. Proc Natl Acad Sci USA 101:11129–11134PubMedCentralPubMedCrossRef
7.
go back to reference Bachmann A, Predehl S, May J, Harder S, Burchard GD, Gilberger TW et al (2011) Highly co-ordinated var gene expression and switching in clinical Plasmodium falciparum isolates from non-immune malaria patients. Cell Microbiol 13:1397–1409PubMedCrossRef Bachmann A, Predehl S, May J, Harder S, Burchard GD, Gilberger TW et al (2011) Highly co-ordinated var gene expression and switching in clinical Plasmodium falciparum isolates from non-immune malaria patients. Cell Microbiol 13:1397–1409PubMedCrossRef
8.
go back to reference Staalsoe T, Hamad AA, Hviid L, Elhassan IM, Arnot DE, Theander TG (2002) In vivo switching between variant surface antigens in human Plasmodium falciparum infection. J Infect Dis 186:719–722PubMedCrossRef Staalsoe T, Hamad AA, Hviid L, Elhassan IM, Arnot DE, Theander TG (2002) In vivo switching between variant surface antigens in human Plasmodium falciparum infection. J Infect Dis 186:719–722PubMedCrossRef
9.
go back to reference Peters J, Fowler E, Gatton M, Chen N, Saul A, Cheng Q (2002) High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers. Proc Natl Acad Sci USA 99:10689–10694PubMedCentralPubMedCrossRef Peters J, Fowler E, Gatton M, Chen N, Saul A, Cheng Q (2002) High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers. Proc Natl Acad Sci USA 99:10689–10694PubMedCentralPubMedCrossRef
10.
go back to reference Frank M, Dzikowski R, Amulic B, Deitsch K (2007) Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol Microbiol 64:1486–1498PubMedCentralPubMedCrossRef Frank M, Dzikowski R, Amulic B, Deitsch K (2007) Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol Microbiol 64:1486–1498PubMedCentralPubMedCrossRef
11.
go back to reference Duffy MF, Selvarajah SA, Josling GA, Petter M (2014) Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics 13:203–216PubMedCrossRef Duffy MF, Selvarajah SA, Josling GA, Petter M (2014) Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics 13:203–216PubMedCrossRef
12.
go back to reference Saul A (1999) The role of variant surface antigens on malaria-infected red blood cells. Parasitol Today 15:455–457PubMedCrossRef Saul A (1999) The role of variant surface antigens on malaria-infected red blood cells. Parasitol Today 15:455–457PubMedCrossRef
13.
go back to reference Helmby H, Cavelier L, Pettersson U, Wahlgren M (1993) Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infect Immun 61:284–288PubMedCentralPubMed Helmby H, Cavelier L, Pettersson U, Wahlgren M (1993) Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infect Immun 61:284–288PubMedCentralPubMed
14.
go back to reference Fernandez V, Hommel M, Chen Q, Hagblom P, Wahlgren M (1999) Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med 190:1393–1404PubMedCentralPubMedCrossRef Fernandez V, Hommel M, Chen Q, Hagblom P, Wahlgren M (1999) Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med 190:1393–1404PubMedCentralPubMedCrossRef
15.
go back to reference Garcia JE, Puentes A, Curtidor H, Vera R, Rodriguez L, Valbuena J et al (2005) Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells. Peptides 26:1133–1143PubMedCrossRef Garcia JE, Puentes A, Curtidor H, Vera R, Rodriguez L, Valbuena J et al (2005) Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells. Peptides 26:1133–1143PubMedCrossRef
16.
go back to reference Bachmann A, Esser C, Petter M, Predehl S, von Kalckreuth V, Schmiedel S et al (2009) Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient. PLoS One 4:e7459PubMedCentralPubMedCrossRef Bachmann A, Esser C, Petter M, Predehl S, von Kalckreuth V, Schmiedel S et al (2009) Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient. PLoS One 4:e7459PubMedCentralPubMedCrossRef
17.
go back to reference Rowe JA, Claessens A, Corrigan RA, Arman M (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11:e16PubMedCentralPubMedCrossRef Rowe JA, Claessens A, Corrigan RA, Arman M (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11:e16PubMedCentralPubMedCrossRef
18.
go back to reference Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S, Kanjee U et al (2014) STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16:81–93PubMedCentralPubMedCrossRef Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S, Kanjee U et al (2014) STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16:81–93PubMedCentralPubMedCrossRef
19.
go back to reference Goel S, Palmkvist M, Moll K, Joannin N, Lara P, Akhouri RR et al (2015) RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med 21:314–317PubMedCrossRef Goel S, Palmkvist M, Moll K, Joannin N, Lara P, Akhouri RR et al (2015) RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med 21:314–317PubMedCrossRef
20.
go back to reference Cheng Q, Cloonan N, Fischer K, Thompson J, Waine G, Lanzer M et al (1998) stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol Biochem Parasitol 97:161–176PubMedCrossRef Cheng Q, Cloonan N, Fischer K, Thompson J, Waine G, Lanzer M et al (1998) stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol Biochem Parasitol 97:161–176PubMedCrossRef
21.
go back to reference Kyes SA, Rowe JA, Kriek N, Newbold CI (1999) Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci USA 96:9333–9338PubMedCentralPubMedCrossRef Kyes SA, Rowe JA, Kriek N, Newbold CI (1999) Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci USA 96:9333–9338PubMedCentralPubMedCrossRef
22.
go back to reference Sam-Yellowe TY, Florens L, Johnson JR, Wang T, Drazba JA, Le Roch KG et al (2004) A Plasmodium gene family encoding Maurer’s cleft membrane proteins: structural properties and expression profiling. Genome Res 14:1052–1059PubMedCentralPubMedCrossRef Sam-Yellowe TY, Florens L, Johnson JR, Wang T, Drazba JA, Le Roch KG et al (2004) A Plasmodium gene family encoding Maurer’s cleft membrane proteins: structural properties and expression profiling. Genome Res 14:1052–1059PubMedCentralPubMedCrossRef
23.
go back to reference Petter M, Bonow I, Klinkert MQ (2008) Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS One 3:e3779PubMedCentralPubMedCrossRef Petter M, Bonow I, Klinkert MQ (2008) Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS One 3:e3779PubMedCentralPubMedCrossRef
24.
go back to reference Bultrini E, Brick K, Mukherjee S, Zhang Y, Silvestrini F, Alano P et al (2009) Revisiting the Plasmodium falciparum RIFIN family: from comparative genomics to 3D-model prediction. BMC Genomics 10:445PubMedCentralPubMedCrossRef Bultrini E, Brick K, Mukherjee S, Zhang Y, Silvestrini F, Alano P et al (2009) Revisiting the Plasmodium falciparum RIFIN family: from comparative genomics to 3D-model prediction. BMC Genomics 10:445PubMedCentralPubMedCrossRef
25.
go back to reference Joannin N, Abhiman S, Sonnhammer EL, Wahlgren M (2008) Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics 9:19PubMedCentralPubMedCrossRef Joannin N, Abhiman S, Sonnhammer EL, Wahlgren M (2008) Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics 9:19PubMedCentralPubMedCrossRef
26.
go back to reference Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C et al (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306:1934–1937PubMedCrossRef Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C et al (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306:1934–1937PubMedCrossRef
27.
go back to reference Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933PubMedCrossRef Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933PubMedCrossRef
28.
go back to reference Abdel-Latif MS, Khattab A, Lindenthal C, Kremsner PG, Klinkert MQ (2002) Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect Immun 70:7013–7021PubMedCentralPubMedCrossRef Abdel-Latif MS, Khattab A, Lindenthal C, Kremsner PG, Klinkert MQ (2002) Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect Immun 70:7013–7021PubMedCentralPubMedCrossRef
29.
go back to reference Abdel-Latif MS, Dietz K, Issifou S, Kremsner PG, Klinkert MQ (2003) Antibodies to Plasmodium falciparum rifin proteins are associated with rapid parasite clearance and asymptomatic infections. Infect Immun 71:6229–6233PubMedCentralPubMedCrossRef Abdel-Latif MS, Dietz K, Issifou S, Kremsner PG, Klinkert MQ (2003) Antibodies to Plasmodium falciparum rifin proteins are associated with rapid parasite clearance and asymptomatic infections. Infect Immun 71:6229–6233PubMedCentralPubMedCrossRef
30.
go back to reference Schreiber N, Khattab A, Petter M, Marks F, Adjei S, Kobbe R et al (2008) Expression of Plasmodium falciparum 3D7 STEVOR proteins for evaluation of antibody responses following malaria infections in naive infants. Parasitology 135:155–167PubMedCrossRef Schreiber N, Khattab A, Petter M, Marks F, Adjei S, Kobbe R et al (2008) Expression of Plasmodium falciparum 3D7 STEVOR proteins for evaluation of antibody responses following malaria infections in naive infants. Parasitology 135:155–167PubMedCrossRef
31.
go back to reference Niang M, Yan Yam X, Preiser PR (2009) The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog 5:e1000307PubMedCentralPubMedCrossRef Niang M, Yan Yam X, Preiser PR (2009) The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog 5:e1000307PubMedCentralPubMedCrossRef
32.
go back to reference Tiburcio M, Niang M, Deplaine G, Perrot S, Bischoff E, Ndour PA et al (2012) A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages. Blood 119:e172–e180PubMedCentralPubMedCrossRef Tiburcio M, Niang M, Deplaine G, Perrot S, Bischoff E, Ndour PA et al (2012) A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages. Blood 119:e172–e180PubMedCentralPubMedCrossRef
33.
go back to reference Petter M, Haeggstrom M, Khattab A, Fernandez V, Klinkert MQ, Wahlgren M (2007) Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol Biochem Parasitol 156:51–61PubMedCrossRef Petter M, Haeggstrom M, Khattab A, Fernandez V, Klinkert MQ, Wahlgren M (2007) Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol Biochem Parasitol 156:51–61PubMedCrossRef
34.
go back to reference Khattab A, Klinkert MQ (2006) Maurer’s clefts-restricted localization, orientation and export of a Plasmodium falciparum RIFIN. Traffic 7:1654–1665PubMedCrossRef Khattab A, Klinkert MQ (2006) Maurer’s clefts-restricted localization, orientation and export of a Plasmodium falciparum RIFIN. Traffic 7:1654–1665PubMedCrossRef
35.
go back to reference Blythe JE, Yam XY, Kuss C, Bozdech Z, Holder AA, Marsh K et al (2008) Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect Immun 76:3329–3336PubMedCentralPubMedCrossRef Blythe JE, Yam XY, Kuss C, Bozdech Z, Holder AA, Marsh K et al (2008) Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect Immun 76:3329–3336PubMedCentralPubMedCrossRef
36.
go back to reference Przyborski JM, Miller SK, Pfahler JM, Henrich PP, Rohrbach P, Crabb BS et al (2005) Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J 24:2306–2317PubMedCentralPubMedCrossRef Przyborski JM, Miller SK, Pfahler JM, Henrich PP, Rohrbach P, Crabb BS et al (2005) Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J 24:2306–2317PubMedCentralPubMedCrossRef
37.
go back to reference Tsarukyanova I, Drazba JA, Fujioka H, Yadav SP, Sam-Yellowe TY (2009) Proteins of the Plasmodium falciparum two transmembrane Maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol Res 104:875–891PubMedCrossRef Tsarukyanova I, Drazba JA, Fujioka H, Yadav SP, Sam-Yellowe TY (2009) Proteins of the Plasmodium falciparum two transmembrane Maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol Res 104:875–891PubMedCrossRef
38.
go back to reference Lavazec C, Sanyal S, Templeton TJ (2006) Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucleic Acids Res 34:6696–6707PubMedCentralPubMedCrossRef Lavazec C, Sanyal S, Templeton TJ (2006) Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucleic Acids Res 34:6696–6707PubMedCentralPubMedCrossRef
39.
go back to reference Trager W, Jensen JB (2005) Human malaria parasites in continuous culture. 1976. J Parasitol 91:484–486PubMedCrossRef Trager W, Jensen JB (2005) Human malaria parasites in continuous culture. 1976. J Parasitol 91:484–486PubMedCrossRef
40.
go back to reference Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420PubMedCrossRef Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420PubMedCrossRef
41.
go back to reference Goodyer ID, Johnson J, Eisenthal R, Hayes DJ (1994) Purification of mature-stage Plasmodium falciparum by gelatine flotation. Ann Trop Med Parasitol 88:209–211PubMed Goodyer ID, Johnson J, Eisenthal R, Hayes DJ (1994) Purification of mature-stage Plasmodium falciparum by gelatine flotation. Ann Trop Med Parasitol 88:209–211PubMed
42.
go back to reference Bachmann A, Petter M, TIlly A-K, Biller L, Uliczka KA, Duffy MF et al (2012) Temporal expression and localization patters of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony. PLoS One 7:e49540PubMedCentralPubMedCrossRef Bachmann A, Petter M, TIlly A-K, Biller L, Uliczka KA, Duffy MF et al (2012) Temporal expression and localization patters of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony. PLoS One 7:e49540PubMedCentralPubMedCrossRef
43.
go back to reference Duffy MF, Brown GV, Basuki W, Krejany EO, Noviyanti R, Cowman AF et al (2002) Transcription of multiple var genes by individual, trophozoite-stage Plasmodium falciparum cells expressing a chondroitin sulphate A binding phenotype. Mol Microbiol 43:1285–1293PubMedCrossRef Duffy MF, Brown GV, Basuki W, Krejany EO, Noviyanti R, Cowman AF et al (2002) Transcription of multiple var genes by individual, trophozoite-stage Plasmodium falciparum cells expressing a chondroitin sulphate A binding phenotype. Mol Microbiol 43:1285–1293PubMedCrossRef
44.
go back to reference Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E et al (2004) Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol 137:13–21PubMedCrossRef Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E et al (2004) Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol 137:13–21PubMedCrossRef
46.
go back to reference Papakrivos J, Newbold CI, Lingelbach K (2005) A potential novel mechanism for the insertion of a membrane protein revealed by a biochemical analysis of the Plasmodium falciparum cytoadherence molecule PfEMP-1. Mol Microbiol 55:1272–1284PubMedCrossRef Papakrivos J, Newbold CI, Lingelbach K (2005) A potential novel mechanism for the insertion of a membrane protein revealed by a biochemical analysis of the Plasmodium falciparum cytoadherence molecule PfEMP-1. Mol Microbiol 55:1272–1284PubMedCrossRef
47.
go back to reference Beaumelle BD, Vial HJ, Philippot JR (1987) Reevaluation, using marker enzymes, of the ability of saponin and ammonium chloride to free Plasmodium from infected erythrocytes. J Parasitol 73:743–748PubMedCrossRef Beaumelle BD, Vial HJ, Philippot JR (1987) Reevaluation, using marker enzymes, of the ability of saponin and ammonium chloride to free Plasmodium from infected erythrocytes. J Parasitol 73:743–748PubMedCrossRef
48.
go back to reference Ansorge I, Benting J, Bhakdi S, Lingelbach K (1996) Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J 315:307–314PubMedCentralPubMed Ansorge I, Benting J, Bhakdi S, Lingelbach K (1996) Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J 315:307–314PubMedCentralPubMed
49.
go back to reference Khattab A, Bonow I, Schreiber N, Petter M, Schmetz C, Klinkert MQ (2008) Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion. Malar J 7:137PubMedCentralPubMedCrossRef Khattab A, Bonow I, Schreiber N, Petter M, Schmetz C, Klinkert MQ (2008) Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion. Malar J 7:137PubMedCentralPubMedCrossRef
50.
go back to reference Waterkeyn JG, Wickham ME, Davern KM, Cooke BM, Coppel RL, Reeder JC et al (2000) Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J 19:2813–2823PubMedCentralPubMedCrossRef Waterkeyn JG, Wickham ME, Davern KM, Cooke BM, Coppel RL, Reeder JC et al (2000) Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J 19:2813–2823PubMedCentralPubMedCrossRef
51.
go back to reference Vincensini L, Richert S, Blisnick T, Van Dorsselaer A, Leize-Wagner E, Rabilloud T et al (2005) Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol Cell Proteomics 4:582–593PubMedCrossRef Vincensini L, Richert S, Blisnick T, Van Dorsselaer A, Leize-Wagner E, Rabilloud T et al (2005) Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol Cell Proteomics 4:582–593PubMedCrossRef
52.
go back to reference Kaviratne M, Khan SM, Jarra W, Preiser PR (2002) Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryot Cell 1:926–935PubMedCentralPubMedCrossRef Kaviratne M, Khan SM, Jarra W, Preiser PR (2002) Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryot Cell 1:926–935PubMedCentralPubMedCrossRef
54.
go back to reference Oberli A, Slater LM, Cutts E, Brand F, Mundwiler-Pachlatko E, Rusch S et al (2014) A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. FASEB J 28:4420–4433PubMedCentralPubMedCrossRef Oberli A, Slater LM, Cutts E, Brand F, Mundwiler-Pachlatko E, Rusch S et al (2014) A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. FASEB J 28:4420–4433PubMedCentralPubMedCrossRef
55.
go back to reference Proellocks NI, Herrmann S, Buckingham DW, Hanssen E, Hodges EK, Elsworth B et al (2014) A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum-infected red blood cells. FASEB J 28:3103–3113PubMedCrossRef Proellocks NI, Herrmann S, Buckingham DW, Hanssen E, Hodges EK, Elsworth B et al (2014) A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum-infected red blood cells. FASEB J 28:3103–3113PubMedCrossRef
56.
go back to reference Horrocks P, Pinches RA, Chakravorty SJ, Papakrivos J, Christodoulou Z, Kyes SA et al (2005) PfEMP1 expression is reduced on the surface of knobless Plasmodium falciparum infected erythrocytes. J Cell Sci 118:2507–2518PubMedCrossRef Horrocks P, Pinches RA, Chakravorty SJ, Papakrivos J, Christodoulou Z, Kyes SA et al (2005) PfEMP1 expression is reduced on the surface of knobless Plasmodium falciparum infected erythrocytes. J Cell Sci 118:2507–2518PubMedCrossRef
57.
go back to reference Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM et al (1997) Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89:287–296PubMedCrossRef Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM et al (1997) Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89:287–296PubMedCrossRef
58.
go back to reference Frankland S, Elliott SR, Yosaatmadja F, Beeson JG, Rogerson SJ, Adisa A et al (2007) Serum lipoproteins promote efficient presentation of the malaria virulence protein PfEMP1 at the erythrocyte surface. Eukaryot Cell 6:1584–1594PubMedCentralPubMedCrossRef Frankland S, Elliott SR, Yosaatmadja F, Beeson JG, Rogerson SJ, Adisa A et al (2007) Serum lipoproteins promote efficient presentation of the malaria virulence protein PfEMP1 at the erythrocyte surface. Eukaryot Cell 6:1584–1594PubMedCentralPubMedCrossRef
59.
go back to reference Templeton TJ (2009) The varieties of gene amplification, diversification and hypervariability in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 166:109–116PubMedCrossRef Templeton TJ (2009) The varieties of gene amplification, diversification and hypervariability in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 166:109–116PubMedCrossRef
60.
go back to reference Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5PubMedCrossRef Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5PubMedCrossRef
61.
go back to reference Rabilloud T (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17:813–829PubMedCrossRef Rabilloud T (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17:813–829PubMedCrossRef
62.
go back to reference Frankland S, Adisa A, Horrocks P, Taraschi TF, Schneider T, Elliott SR et al (2006) Delivery of the malaria virulence protein PfEMP1 to the erythrocyte surface requires cholesterol-rich domains. Eukaryot Cell 5:849–860PubMedCentralPubMedCrossRef Frankland S, Adisa A, Horrocks P, Taraschi TF, Schneider T, Elliott SR et al (2006) Delivery of the malaria virulence protein PfEMP1 to the erythrocyte surface requires cholesterol-rich domains. Eukaryot Cell 5:849–860PubMedCentralPubMedCrossRef
63.
go back to reference Di Girolamo F, Raggi C, Birago C, Pizzi E, Lalle M, Picci L et al (2008) Plasmodium lipid rafts contain proteins implicated in vesicular trafficking and signalling as well as members of the PIR superfamily, potentially implicated in host immune system interactions. Proteomics 8:2500–2513PubMedCrossRef Di Girolamo F, Raggi C, Birago C, Pizzi E, Lalle M, Picci L et al (2008) Plasmodium lipid rafts contain proteins implicated in vesicular trafficking and signalling as well as members of the PIR superfamily, potentially implicated in host immune system interactions. Proteomics 8:2500–2513PubMedCrossRef
64.
go back to reference Blisnick T, Morales Betoulle ME, Barale JC, Uzureau P, Berry L, Desroses S et al (2000) Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol Biochem Parasitol 111:107–121PubMedCrossRef Blisnick T, Morales Betoulle ME, Barale JC, Uzureau P, Berry L, Desroses S et al (2000) Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol Biochem Parasitol 111:107–121PubMedCrossRef
65.
go back to reference Gunther K, Tummler M, Arnold HH, Ridley R, Goman M, Scaife JG et al (1991) An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. Mol Biochem Parasitol 46:149–157PubMedCrossRef Gunther K, Tummler M, Arnold HH, Ridley R, Goman M, Scaife JG et al (1991) An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. Mol Biochem Parasitol 46:149–157PubMedCrossRef
66.
go back to reference Saridaki T, Frohlich KS, Braun-Breton C, Lanzer M (2009) Export of PfSBP1 to the Plasmodium falciparum Maurer’s clefts. Traffic 10:137–152PubMedCrossRef Saridaki T, Frohlich KS, Braun-Breton C, Lanzer M (2009) Export of PfSBP1 to the Plasmodium falciparum Maurer’s clefts. Traffic 10:137–152PubMedCrossRef
67.
go back to reference Robinson GB, Ligler FS (1980) The effects of protein extraction on the structure and filtration properties of renal basement membranes. Eur J Biochem 111:485–490PubMedCrossRef Robinson GB, Ligler FS (1980) The effects of protein extraction on the structure and filtration properties of renal basement membranes. Eur J Biochem 111:485–490PubMedCrossRef
68.
go back to reference Doonan S (1996) Protein purification protocols. General strategies. Methods Mol Biol 59:1–16PubMed Doonan S (1996) Protein purification protocols. General strategies. Methods Mol Biol 59:1–16PubMed
69.
go back to reference Tokumasu F, Crivat G, Ackerman H, Hwang J, Wellems TE (2014) Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids. Biol Open 3:529–541 Tokumasu F, Crivat G, Ackerman H, Hwang J, Wellems TE (2014) Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids. Biol Open 3:529–541
70.
go back to reference Yam XY, Birago C, Fratini F, Di Girolamo F, Raggi C, Sargiacomo M et al (2013) Proteomic analysis of detergent-resistant membrane microdomains in trophozoite blood stage of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 12:3948–3961PubMedCentralPubMedCrossRef Yam XY, Birago C, Fratini F, Di Girolamo F, Raggi C, Sargiacomo M et al (2013) Proteomic analysis of detergent-resistant membrane microdomains in trophozoite blood stage of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 12:3948–3961PubMedCentralPubMedCrossRef
Metadata
Title
A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes
Authors
Anna Bachmann
Judith Anna Marie Scholz
Marthe Janßen
Mo-Quen Klinkert
Egbert Tannich
Iris Bruchhaus
Michaela Petter
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0784-2

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue