Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Characterization of Plasmodium falciparum ATP-dependent DNA helicase RuvB3

Authors: Paviga Limudomporn, Saengduen Moonsom, Ubolsree Leartsakulpanich, Pattra Suntornthiticharoen, Songsak Petmitr, Michael Weinfeld, Porntip Chavalitshewinkoon-Petmitr

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Malaria is one of the most serious and widespread parasitic diseases affecting humans. Because of the spread of resistance in both parasites and the mosquito vectors to anti-malarial drugs and insecticides, controlling the spread of malaria is becoming difficult. Thus, identifying new drug targets is urgently needed. Helicases play key roles in a wide range of cellular activities involving DNA and RNA transactions, making them attractive anti-malarial drug targets.

Methods

ATP-dependent DNA helicase gene (PfRuvB3) of Plasmodium falciparum strain K1, a chloroquine and pyrimethamine-resistant strain, was inserted into pQE-TriSystem His-Strep 2 vector, heterologously expressed and affinity purified. Identity of recombinant PfRuvB3 was confirmed by western blotting coupled with tandem mass spectrometry. Helicase and ATPase activities were characterized as well as co-factors required for optimal function.

Results

Recombinant PfRuvB3 has molecular size of 59 kDa, showing both DNA helicase and ATPase activities. Its helicase activity is dependent on divalent cations (Cu2+, Mg2+, Ni+2 or Zn+2) and ATP or dATP but is inhibited by high NaCl concentration (>100 mM). PfPuvB3 is unable to act on blunt-ended duplex DNA, but manifests ATPase activity in the presence of either single- or double-stranded DNA. PfRuvB3.is inhibited by doxorubicin, daunorubicin and netropsin, known DNA helicase inhibitors.

Conclusions

Purified recombinant PfRuvB3 contains both DNA helicase and ATPase activities. Differences in properties of RuvB between the malaria parasite obtained from the study and human host provide an avenue leading to the development of novel drugs targeting specifically the malaria form of RuvB family of DNA helicases.
Literature
1.
go back to reference WHO. World Malaria report 2015. Geneva, World Health Organization. 2015. WHO. World Malaria report 2015. Geneva, World Health Organization. 2015.
2.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral
3.
go back to reference Sahu NK, Sahu S, Kohli DV. Novel molecular targets for antimalarial drug development. Chem Biol Drug Des. 2008;71:287–97.CrossRefPubMed Sahu NK, Sahu S, Kohli DV. Novel molecular targets for antimalarial drug development. Chem Biol Drug Des. 2008;71:287–97.CrossRefPubMed
4.
go back to reference Lohman TM. Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol. 1992;6:5–14.CrossRefPubMed Lohman TM. Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol. 1992;6:5–14.CrossRefPubMed
6.
go back to reference Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. The role of RuvA octamerization for RuvAB function in vitro and in vivo. J Biol Chem. 2005;280:3365–75.CrossRefPubMed Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. The role of RuvA octamerization for RuvAB function in vitro and in vivo. J Biol Chem. 2005;280:3365–75.CrossRefPubMed
7.
go back to reference Baharoglu Z, Petranovic M, Flores MJ, Michel B. RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J. 2006;25:596–604.CrossRefPubMedPubMedCentral Baharoglu Z, Petranovic M, Flores MJ, Michel B. RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J. 2006;25:596–604.CrossRefPubMedPubMedCentral
8.
go back to reference Mezard C, George H, Davies AA, van Gool AJ, Zerbib D, Stasiak A, et al. Escherichia coli RuvBL268S: a mutant RuvB protein that exhibits wild-type activities in vitro but confers a UV-sensitive ruv phenotype in vivo. Nucleic Acids Res. 1999;27:1275–82.CrossRefPubMedPubMedCentral Mezard C, George H, Davies AA, van Gool AJ, Zerbib D, Stasiak A, et al. Escherichia coli RuvBL268S: a mutant RuvB protein that exhibits wild-type activities in vitro but confers a UV-sensitive ruv phenotype in vivo. Nucleic Acids Res. 1999;27:1275–82.CrossRefPubMedPubMedCentral
9.
go back to reference He AS, Rohatgi PR, Hersh MN, Rosenberg SM. Roles of E. coli double-strand-break-repair proteins in stress-induced mutation. DNA Repair. 2006;5:258–73.CrossRefPubMed He AS, Rohatgi PR, Hersh MN, Rosenberg SM. Roles of E. coli double-strand-break-repair proteins in stress-induced mutation. DNA Repair. 2006;5:258–73.CrossRefPubMed
10.
go back to reference Lim CR, Kimata Y, Ohdate H, Kokubo T, Kikuchi N, Horigome T, et al. The Saccharomyces cerevisiae RuvB-like protein, Tih2p, is required for cell cycle progression and RNA polymerase II-directed transcription. J Biol Chem. 2000;275:22409–17.CrossRefPubMed Lim CR, Kimata Y, Ohdate H, Kokubo T, Kikuchi N, Horigome T, et al. The Saccharomyces cerevisiae RuvB-like protein, Tih2p, is required for cell cycle progression and RNA polymerase II-directed transcription. J Biol Chem. 2000;275:22409–17.CrossRefPubMed
11.
go back to reference ZaO Jónsson, Dhar SK, Narlikar GJ, Auty R, Wagle N, Pellman D, et al. Rvb1p and Rvb2p Are Essential components of a chromatin remodeling complex that regulates transcription of over 5 % of yeast genes. J Biol Chem. 2001;276:16279–88.CrossRef ZaO Jónsson, Dhar SK, Narlikar GJ, Auty R, Wagle N, Pellman D, et al. Rvb1p and Rvb2p Are Essential components of a chromatin remodeling complex that regulates transcription of over 5 % of yeast genes. J Biol Chem. 2001;276:16279–88.CrossRef
12.
go back to reference Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K. Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth. J Biol Chem. 2003;278:14647–56.CrossRefPubMed Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K. Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth. J Biol Chem. 2003;278:14647–56.CrossRefPubMed
13.
go back to reference Qiu XB, Lin YL, Thome KC, Pian P, Schlegel BP, Weremowicz S, et al. An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem. 1998;273:27786–93.CrossRefPubMed Qiu XB, Lin YL, Thome KC, Pian P, Schlegel BP, Weremowicz S, et al. An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem. 1998;273:27786–93.CrossRefPubMed
14.
go back to reference Bauer A, Huber O, Kemler R. Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci USA. 1998;95:14787–92.CrossRefPubMedPubMedCentral Bauer A, Huber O, Kemler R. Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci USA. 1998;95:14787–92.CrossRefPubMedPubMedCentral
15.
go back to reference Matias PM, Gorynia S, Donner P, Carrondo MA. Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem. 2006;281:38918–29.CrossRefPubMed Matias PM, Gorynia S, Donner P, Carrondo MA. Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem. 2006;281:38918–29.CrossRefPubMed
16.
go back to reference Gangwar D, Kalita MK, Gupta D, Chauhan VS, Mohmmed A. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation. Malar J. 2009;8:69.CrossRefPubMedPubMedCentral Gangwar D, Kalita MK, Gupta D, Chauhan VS, Mohmmed A. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation. Malar J. 2009;8:69.CrossRefPubMedPubMedCentral
17.
go back to reference Ahmad M, Tuteja R. Plasmodium falciparum RuvB proteins: emerging importance and expectations beyond cell cycle progression. Commun Integr Biol. 2012;5:350–61.CrossRefPubMedPubMedCentral Ahmad M, Tuteja R. Plasmodium falciparum RuvB proteins: emerging importance and expectations beyond cell cycle progression. Commun Integr Biol. 2012;5:350–61.CrossRefPubMedPubMedCentral
18.
go back to reference Ahmad M, Tuteja R. Plasmodium falciparum RuvB1 is an active DNA helicase and translocates in the 5′-3′ direction. Gene. 2013;515:99–109.CrossRefPubMed Ahmad M, Tuteja R. Plasmodium falciparum RuvB1 is an active DNA helicase and translocates in the 5′-3′ direction. Gene. 2013;515:99–109.CrossRefPubMed
19.
go back to reference Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′-3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. Biochim Biophys Acta. 2013;1834:2795–811.CrossRefPubMed Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′-3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. Biochim Biophys Acta. 2013;1834:2795–811.CrossRefPubMed
20.
go back to reference Ahmad M, Singh S, Afrin F, Tuteja R. Novel RuvB nuclear ATPase is specific to intraerythrocytic mitosis during schizogony of Plasmodium falciparum. Mol Biochem Parasitol. 2012;185:58–65.CrossRefPubMed Ahmad M, Singh S, Afrin F, Tuteja R. Novel RuvB nuclear ATPase is specific to intraerythrocytic mitosis during schizogony of Plasmodium falciparum. Mol Biochem Parasitol. 2012;185:58–65.CrossRefPubMed
21.
go back to reference Thaithong S, Beale GH, Chutmongkonkul M. Susceptibility of Plasmodium falciparum to five drugs: an in vitro study of isolates mainly from Thailand. Trans R Soc Trop Med Hyg. 1983;77:228–31.CrossRefPubMed Thaithong S, Beale GH, Chutmongkonkul M. Susceptibility of Plasmodium falciparum to five drugs: an in vitro study of isolates mainly from Thailand. Trans R Soc Trop Med Hyg. 1983;77:228–31.CrossRefPubMed
22.
go back to reference Suntornthiticharoen P, Petmitr S, Chavalitshewinkoon-Petmitr P. Purification and characterization of a novel 3′-5′ DNA helicase from Plasmodium falciparum and its sensitivity to anthracycline antibiotics. Parasitol. 2006;133:389–98.CrossRef Suntornthiticharoen P, Petmitr S, Chavalitshewinkoon-Petmitr P. Purification and characterization of a novel 3′-5′ DNA helicase from Plasmodium falciparum and its sensitivity to anthracycline antibiotics. Parasitol. 2006;133:389–98.CrossRef
23.
go back to reference Salzer U, Kubicek M, Prohaska R. Isolation, molecular characterization, and tissue-specific expression of ECP-51 and ECP-54 (TIP49), two homologous, interacting erythroid cytosolic proteins. Biochim Biophys Acta. 1999;1446:365–70.CrossRefPubMed Salzer U, Kubicek M, Prohaska R. Isolation, molecular characterization, and tissue-specific expression of ECP-51 and ECP-54 (TIP49), two homologous, interacting erythroid cytosolic proteins. Biochim Biophys Acta. 1999;1446:365–70.CrossRefPubMed
24.
go back to reference Wood MA, McMahon SB, Cole MD. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell. 2000;5:321–30.CrossRefPubMed Wood MA, McMahon SB, Cole MD. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell. 2000;5:321–30.CrossRefPubMed
25.
go back to reference Tsaneva IR, Müller B, West SC. RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro. Proc Natl Acad Sci USA. 1993;90:1315–9.CrossRefPubMedPubMedCentral Tsaneva IR, Müller B, West SC. RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro. Proc Natl Acad Sci USA. 1993;90:1315–9.CrossRefPubMedPubMedCentral
26.
go back to reference Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K, et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem. 1999;274:22437–44.CrossRefPubMed Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K, et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem. 1999;274:22437–44.CrossRefPubMed
27.
go back to reference Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol. 2007;366:179–92.CrossRefPubMed Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol. 2007;366:179–92.CrossRefPubMed
28.
go back to reference Gribun A, Cheung KLY, Huen J, Ortega J, Houry WA. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol. 2008;376:1320–33.CrossRefPubMed Gribun A, Cheung KLY, Huen J, Ortega J, Houry WA. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol. 2008;376:1320–33.CrossRefPubMed
29.
go back to reference Torreira E, Jha S, Lopez-Blanco JR, Arias-Palomo E, Chacon P, Canas C, et al. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure. 2008;16:1511–20.CrossRefPubMedPubMedCentral Torreira E, Jha S, Lopez-Blanco JR, Arias-Palomo E, Chacon P, Canas C, et al. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure. 2008;16:1511–20.CrossRefPubMedPubMedCentral
30.
go back to reference Estevao S, Sluijter M, Hartwig NG, van Rossum AMC, Vink C. Functional Characterization of the RuvB Homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. J Bacteriol. 2011;193:6425–35.CrossRefPubMedPubMedCentral Estevao S, Sluijter M, Hartwig NG, van Rossum AMC, Vink C. Functional Characterization of the RuvB Homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. J Bacteriol. 2011;193:6425–35.CrossRefPubMedPubMedCentral
31.
go back to reference Tsaneva IR, West SC. Targeted versus non-targeted DNA helicase activity of the RuvA and RuvB proteins of Escherichia coli. J Biol Chem. 1994;269:26552–8.PubMed Tsaneva IR, West SC. Targeted versus non-targeted DNA helicase activity of the RuvA and RuvB proteins of Escherichia coli. J Biol Chem. 1994;269:26552–8.PubMed
32.
go back to reference Akhtar MS, Ahmad A, Bhakuni V. Divalent cation induced changes in structural properties of the dimeric enzyme glucose oxidase: dual effect of dimer stabilization and dissociation with loss of cooperative interactions in enzyme monomer. Biochemistry. 2002;41:7142–9.CrossRefPubMed Akhtar MS, Ahmad A, Bhakuni V. Divalent cation induced changes in structural properties of the dimeric enzyme glucose oxidase: dual effect of dimer stabilization and dissociation with loss of cooperative interactions in enzyme monomer. Biochemistry. 2002;41:7142–9.CrossRefPubMed
33.
go back to reference Warren JC, Cheatum SG. Effect of neutral salts on enzyme activity and structure. Biochemistry. 1966;1(5):1702–7.CrossRef Warren JC, Cheatum SG. Effect of neutral salts on enzyme activity and structure. Biochemistry. 1966;1(5):1702–7.CrossRef
34.
go back to reference Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, K-i Okazaki, et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem. 1999;274:22437–44.CrossRefPubMed Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, K-i Okazaki, et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem. 1999;274:22437–44.CrossRefPubMed
35.
go back to reference Parsons CA, West SC. Formation of a RuvAB-Holliday junction complex in vitro. J Mol Biol. 1993;232:397–405.CrossRefPubMed Parsons CA, West SC. Formation of a RuvAB-Holliday junction complex in vitro. J Mol Biol. 1993;232:397–405.CrossRefPubMed
36.
go back to reference Estevao S, Sluijter M, Hartwig NG, van Rossum AM, Vink C. Functional characterization of the RuvB homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. J Bacteriol. 2011;193:6425–35.CrossRefPubMedPubMedCentral Estevao S, Sluijter M, Hartwig NG, van Rossum AM, Vink C. Functional characterization of the RuvB homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. J Bacteriol. 2011;193:6425–35.CrossRefPubMedPubMedCentral
38.
go back to reference Huen J, Kakihara Y, Ugwu F, Cheung KL, Ortega J, Houry WA. Rvb1-Rvb2: essential ATP-dependent helicases for critical complexes. Biochem Cell Biol. 2010;88:29–40.CrossRefPubMed Huen J, Kakihara Y, Ugwu F, Cheung KL, Ortega J, Houry WA. Rvb1-Rvb2: essential ATP-dependent helicases for critical complexes. Biochem Cell Biol. 2010;88:29–40.CrossRefPubMed
39.
go back to reference Marco A, Arcamone F. DNA complexing antibiotics: daunomycin, adriamycin and their derivatives. Arzneimittelforschung. 1975;25:368–74.PubMed Marco A, Arcamone F. DNA complexing antibiotics: daunomycin, adriamycin and their derivatives. Arzneimittelforschung. 1975;25:368–74.PubMed
40.
go back to reference Tarique M, Tabassum F, Ahmad M, Tuteja R. Malaria Group. Plasmodium falciparum UvrD activities are downregulated by DNA-interacting compounds and its dsRNA inhibits malaria parasite growth. BMC Biochem. 2014;15:9.CrossRefPubMedPubMedCentral Tarique M, Tabassum F, Ahmad M, Tuteja R. Malaria Group. Plasmodium falciparum UvrD activities are downregulated by DNA-interacting compounds and its dsRNA inhibits malaria parasite growth. BMC Biochem. 2014;15:9.CrossRefPubMedPubMedCentral
41.
go back to reference Pradhan A, Tuteja R. Bipolar, Dual Plasmodium falciparum helicase 45 expressed in the intraerythrocytic developmental cycle is required for parasite growth. J Mol Biol. 2007;373:268–81.CrossRefPubMed Pradhan A, Tuteja R. Bipolar, Dual Plasmodium falciparum helicase 45 expressed in the intraerythrocytic developmental cycle is required for parasite growth. J Mol Biol. 2007;373:268–81.CrossRefPubMed
42.
go back to reference Pradhan A, Tuteja R. Plasmodium falciparum DNA helicase 60. dsRNA- and antibody-mediated inhibition of malaria parasite growth and downregulation of its enzyme activities by DNA-interacting compounds. FEBS J. 2006;273:3545–56.CrossRefPubMed Pradhan A, Tuteja R. Plasmodium falciparum DNA helicase 60. dsRNA- and antibody-mediated inhibition of malaria parasite growth and downregulation of its enzyme activities by DNA-interacting compounds. FEBS J. 2006;273:3545–56.CrossRefPubMed
43.
go back to reference Bachur NR, Yu F, Johnson R, Hickey R, Wu Y, Malkas L. Helicase inhibition by anthracycline anticancer agents. Mol Pharmacol. 1992;41:993–8.PubMed Bachur NR, Yu F, Johnson R, Hickey R, Wu Y, Malkas L. Helicase inhibition by anthracycline anticancer agents. Mol Pharmacol. 1992;41:993–8.PubMed
44.
Metadata
Title
Characterization of Plasmodium falciparum ATP-dependent DNA helicase RuvB3
Authors
Paviga Limudomporn
Saengduen Moonsom
Ubolsree Leartsakulpanich
Pattra Suntornthiticharoen
Songsak Petmitr
Michael Weinfeld
Porntip Chavalitshewinkoon-Petmitr
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1573-2

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue