Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Overhead tank is the potential breeding habitat of Anopheles stephensi in an urban transmission setting of Chennai, India

Authors: Shalu Thomas, Sangamithra Ravishankaran, Johnson A. Justin, Aswin Asokan, Manu T. Mathai, Neena Valecha, Matthew B. Thomas, Alex Eapen

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Wells and overhead tanks (OHT) are the major breeding sources of the local malaria vector, Anopheles stephensi in the Indian city of Chennai; they play a significant role in vector breeding, and transmission of urban malaria. Many other man-made breeding habitats, such as cemented cisterns/containers, barrels or drums, sumps or underground tanks, and plastic pots/containers are maintained to supplement water needs, temporarily resulting in enhanced mosquito/vector breeding. Correlating breeding habitats with immature vector abundance is important in effective planning to strengthen operational execution of vector control measures.

Methods

A year-long, weekly study was conducted in Chennai to inspect available clear/clean water mosquito breeding habitats. Different breeding features, such as instar-wise, immature density and co-inhabitation with other mosquito species, were analysed. The characteristics of breeding habitats, i.e., type of habitat, water temperature and presence of aquatic organisms, organic matter and green algal remnants on the water surface at the time of inspection, were also studied. Immature density of vector was correlated with presence of other mosquito species, malaria prevalence, habitat characteristics and monthly/seasonal fluctuations. All the data collected from field observations were analysed using standard statistical tools.

Results

When the immature density of breeding habitats was analysed, using one-way ANOVA, it was observed that the density did not change in a significant way either across seasons or months. OHTs contributed significantly to the immature population when compared to wells and other breeding habitats of the study site. The habitat positivity of wells and OHTs was significantly associated with the presence of aquatic organisms, organic matter and algal remnants. Significant correlations of malaria prevalence with monthly immature density, as well as number of breeding habitats with immature vector mosquitoes, were also observed.

Conclusions

The findings that OHTs showed fairly high and consistent immature density of An. stephensi irrespective of seasons indicates the potentiality of the breeding habitat in contributing to vector density. The correlation between vector breeding habitats, immature density and malaria prevalence indicates the proximity of these habitats to malaria cases, proving its role in vector abundance and local malaria transmission. The preference of An. stephensi to breed in OHTs calls for intensified, appropriate and sustained intervention measures to curtail vector breeding and propagation to shrink malaria to pre-elimination level and beyond.
Literature
1.
go back to reference Kumar V, Mangal A, Panesar S, Yadav G, Talwar R, Raut D, et al. Forecasting malaria cases using climatic factors in Delhi, India: a time series analysis. Malar Res Treat. 2014;2014:482851.PubMedPubMedCentral Kumar V, Mangal A, Panesar S, Yadav G, Talwar R, Raut D, et al. Forecasting malaria cases using climatic factors in Delhi, India: a time series analysis. Malar Res Treat. 2014;2014:482851.PubMedPubMedCentral
2.
go back to reference Surya KS, Prajesh KT, Ashok KU, Mohammed AH, Agrawal OP. Efficacy, human safety and collateral benefits of alphacypermethrin-treated long-lasting insecticidal net (Interceptor®) in a hyperendemic tribal area of Orissa, India. J Trop Dis. 2014;2:1352. Surya KS, Prajesh KT, Ashok KU, Mohammed AH, Agrawal OP. Efficacy, human safety and collateral benefits of alphacypermethrin-treated long-lasting insecticidal net (Interceptor®) in a hyperendemic tribal area of Orissa, India. J Trop Dis. 2014;2:1352.
4.
go back to reference Kumar DS, Andimuthu R, Rajan R, Venkatesan MS. Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai. Malar J. 2014;13:144.CrossRef Kumar DS, Andimuthu R, Rajan R, Venkatesan MS. Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai. Malar J. 2014;13:144.CrossRef
5.
go back to reference Shalini S, Chaudhuri S, Sutton PL, Mishra N, Srivastava N, David JK, et al. Chloroquine efficacy studies confirm drug susceptibility of Plasmodium vivax in Chennai, India. Malar J. 2014;13:1295.CrossRef Shalini S, Chaudhuri S, Sutton PL, Mishra N, Srivastava N, David JK, et al. Chloroquine efficacy studies confirm drug susceptibility of Plasmodium vivax in Chennai, India. Malar J. 2014;13:1295.CrossRef
6.
go back to reference Cator LJ, Thomas S, Paaijmans KP, Sangamithra R, Justin JA, Mathai MT, et al. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India. Malar J. 2013;12:84.CrossRefPubMedPubMedCentral Cator LJ, Thomas S, Paaijmans KP, Sangamithra R, Justin JA, Mathai MT, et al. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India. Malar J. 2013;12:84.CrossRefPubMedPubMedCentral
8.
go back to reference WHO. Malaria entomology and vector control—guide for participants. Geneva: World Health Organization; 2013. p. 36. WHO. Malaria entomology and vector control—guide for participants. Geneva: World Health Organization; 2013. p. 36.
9.
go back to reference WHO. Larval source management: a supplementary measure for malaria vector control: an operational manual. Geneva: World Health Organization; 2013. p. 116. WHO. Larval source management: a supplementary measure for malaria vector control: an operational manual. Geneva: World Health Organization; 2013. p. 116.
10.
go back to reference Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK. Physical, chemical and biological characteristics in habitats of high and low presence of Anopheline larvae in Western Kenya highlands. PLoS One. 2012;7:e47975.CrossRefPubMedPubMedCentral Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK. Physical, chemical and biological characteristics in habitats of high and low presence of Anopheline larvae in Western Kenya highlands. PLoS One. 2012;7:e47975.CrossRefPubMedPubMedCentral
11.
go back to reference Kipyab PC, Khaemba BM, Mwangangi JM, Mbogo CM. The physicochemical and environmental factors affecting the distribution of Anopheles merus along the Kenyan coast. Parasit Vectors. 2015;8:221.CrossRefPubMedPubMedCentral Kipyab PC, Khaemba BM, Mwangangi JM, Mbogo CM. The physicochemical and environmental factors affecting the distribution of Anopheles merus along the Kenyan coast. Parasit Vectors. 2015;8:221.CrossRefPubMedPubMedCentral
12.
go back to reference Nkondjio CA, Fossog BT, Ndo C, Djantio BM, Togouet SZ, Ambene PA, et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution. Malar J. 2011;10:154.CrossRef Nkondjio CA, Fossog BT, Ndo C, Djantio BM, Togouet SZ, Ambene PA, et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution. Malar J. 2011;10:154.CrossRef
13.
go back to reference WHO. Vector control: methods for use by individuals and communities. Geneva: World Health Organization; 1997. p. 412. WHO. Vector control: methods for use by individuals and communities. Geneva: World Health Organization; 1997. p. 412.
14.
go back to reference Das MK, Wattal S, Nanda N, Adak T. Laboratory colonization of Anopheles sundaicus. Curr Sci. 2004;86:8. Das MK, Wattal S, Nanda N, Adak T. Laboratory colonization of Anopheles sundaicus. Curr Sci. 2004;86:8.
15.
go back to reference Nagpal BN, Sharma VP. Indian anophelines. New Delhi: Oxford and IBH Publishing Co. Pvt Ltd; 1995. Nagpal BN, Sharma VP. Indian anophelines. New Delhi: Oxford and IBH Publishing Co. Pvt Ltd; 1995.
16.
go back to reference Nagpal BN, Srivastava A, Saxena R, Ansari MA, Dash AP, Das SC. Pictorial identification key for Indian anophelines. Delhi: Malaria Research Centre (ICMR); 2005. p. 40. Nagpal BN, Srivastava A, Saxena R, Ansari MA, Dash AP, Das SC. Pictorial identification key for Indian anophelines. Delhi: Malaria Research Centre (ICMR); 2005. p. 40.
17.
go back to reference WHO. Training manual on malaria entomology. Geneva: World Health Organization; 2012. p. 78. WHO. Training manual on malaria entomology. Geneva: World Health Organization; 2012. p. 78.
18.
go back to reference Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera:Culicidae). Bull Entomol Res. 2003;93:375–81.CrossRefPubMed Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera:Culicidae). Bull Entomol Res. 2003;93:375–81.CrossRefPubMed
19.
go back to reference Lyons CL, Coetzee M, Chown SL. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasit Vectors. 2013;6:104.CrossRefPubMedPubMedCentral Lyons CL, Coetzee M, Chown SL. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasit Vectors. 2013;6:104.CrossRefPubMedPubMedCentral
20.
go back to reference Impoinvil DE, Cardenas GA, Gihture JI, Mbogo CM, Beier JC. Constant temperature and time period effects on Anopheles gambiae egg hatching. J Am Mosq Control Assoc. 2007;23:124–30.CrossRefPubMedPubMedCentral Impoinvil DE, Cardenas GA, Gihture JI, Mbogo CM, Beier JC. Constant temperature and time period effects on Anopheles gambiae egg hatching. J Am Mosq Control Assoc. 2007;23:124–30.CrossRefPubMedPubMedCentral
21.
go back to reference Huang J, Walker ED, Vulule J, Miller JR. Daily temperature profiles in and around Western Kenyan larval habitats of Anopheles gambiae as related to egg mortality. Malar J. 2006;5:87.CrossRefPubMedPubMedCentral Huang J, Walker ED, Vulule J, Miller JR. Daily temperature profiles in and around Western Kenyan larval habitats of Anopheles gambiae as related to egg mortality. Malar J. 2006;5:87.CrossRefPubMedPubMedCentral
22.
go back to reference Imbahale SS, Paaijmans KP, Mukabana WR, Lammeren RV, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:81.CrossRefPubMedPubMedCentral Imbahale SS, Paaijmans KP, Mukabana WR, Lammeren RV, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:81.CrossRefPubMedPubMedCentral
23.
go back to reference Machault V, Gadiaga L, Vignolles C, Jarjaval F, Bouzid S, Sokhna C, et al. Highly focused anopheline breeding sites and malaria transmission in Dakar. Malar J. 2009;8:138.CrossRefPubMedPubMedCentral Machault V, Gadiaga L, Vignolles C, Jarjaval F, Bouzid S, Sokhna C, et al. Highly focused anopheline breeding sites and malaria transmission in Dakar. Malar J. 2009;8:138.CrossRefPubMedPubMedCentral
24.
go back to reference Kristan M, Abeku TA, Beard J, Okia M, Rapuoda B, Sang J, et al. Variations in entomological indices in relation to weather patterns and malaria incidence in East African highlands: implications for epidemic prevention and control. Malar J. 2008;7:231.CrossRefPubMedPubMedCentral Kristan M, Abeku TA, Beard J, Okia M, Rapuoda B, Sang J, et al. Variations in entomological indices in relation to weather patterns and malaria incidence in East African highlands: implications for epidemic prevention and control. Malar J. 2008;7:231.CrossRefPubMedPubMedCentral
25.
go back to reference Paaijmans KP, Wandago MO, Githeko AK, Takken W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One. 2007;2:11.CrossRef Paaijmans KP, Wandago MO, Githeko AK, Takken W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One. 2007;2:11.CrossRef
26.
go back to reference Yoshioka M, Couret J, Kim F, McMillan J, Burkot TR, Dotson EM, et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera:Culicidae). Parasit Vectors. 2012;5:225.CrossRefPubMedPubMedCentral Yoshioka M, Couret J, Kim F, McMillan J, Burkot TR, Dotson EM, et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera:Culicidae). Parasit Vectors. 2012;5:225.CrossRefPubMedPubMedCentral
27.
go back to reference Sumba LA, Ogbunugafor CB, Deng AL, Hassanali A. Regulation of oviposition in Anopheles gambiae s.s: role of inter- and intra-specific signals. J Chem Ecol. 2008;34:1430–6.CrossRefPubMed Sumba LA, Ogbunugafor CB, Deng AL, Hassanali A. Regulation of oviposition in Anopheles gambiae s.s: role of inter- and intra-specific signals. J Chem Ecol. 2008;34:1430–6.CrossRefPubMed
28.
go back to reference Mwangangi JM, Muturi EJ, Shililu J, Muriu SM, Jacob B, Kabiru EW, et al. Contribution of different aquatic habitats to adult Anopheles arabiensis and Culex quinquefasciatus (Diptera:Culicidae) production in a rice agroecosystem in Mwea, Kenya. J Vector Ecol. 2008;33:129–38.CrossRefPubMed Mwangangi JM, Muturi EJ, Shililu J, Muriu SM, Jacob B, Kabiru EW, et al. Contribution of different aquatic habitats to adult Anopheles arabiensis and Culex quinquefasciatus (Diptera:Culicidae) production in a rice agroecosystem in Mwea, Kenya. J Vector Ecol. 2008;33:129–38.CrossRefPubMed
29.
go back to reference Afify A, Galizia CG. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol. Parasit Vectors. 2014;7:315.CrossRefPubMedPubMedCentral Afify A, Galizia CG. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol. Parasit Vectors. 2014;7:315.CrossRefPubMedPubMedCentral
30.
go back to reference Suwonkerd W, Ritthison W, Ngo CT, Tainchum K, Bangs MJ, Chareonviriyaphap T. Vector biology and malaria transmission in Southeast Asia, Anopheles mosquitoes—new insights into malaria vectors. InTech. 2013. doi:10.5772/56347. Suwonkerd W, Ritthison W, Ngo CT, Tainchum K, Bangs MJ, Chareonviriyaphap T. Vector biology and malaria transmission in Southeast Asia, Anopheles mosquitoes—new insights into malaria vectors. InTech. 2013. doi:10.​5772/​56347.
31.
go back to reference Quraishi MS, Esghi N, Faghih MA. Flight range, lengths of gonotrophic cycles, and longevity of P32-labeled Anopheles stephensi mysorensis. J Econ Entomol. 1966;59:50–5.CrossRefPubMed Quraishi MS, Esghi N, Faghih MA. Flight range, lengths of gonotrophic cycles, and longevity of P32-labeled Anopheles stephensi mysorensis. J Econ Entomol. 1966;59:50–5.CrossRefPubMed
32.
go back to reference Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford SB, Murdock CC, et al. Temperature variations make ectotherms more sensitive to climate change. Glob Chang Biol. 2013;19:2373–80.CrossRefPubMedPubMedCentral Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford SB, Murdock CC, et al. Temperature variations make ectotherms more sensitive to climate change. Glob Chang Biol. 2013;19:2373–80.CrossRefPubMedPubMedCentral
33.
go back to reference Mandal B, Biswas B, Banerjee A, Mukherjee TK, Nandi J. Breeding propensity of Anopheles stephensi in chlorinated and rainwater containers in Kolkata City, India. J Vector Borne Dis. 2011;48:58–60.PubMed Mandal B, Biswas B, Banerjee A, Mukherjee TK, Nandi J. Breeding propensity of Anopheles stephensi in chlorinated and rainwater containers in Kolkata City, India. J Vector Borne Dis. 2011;48:58–60.PubMed
34.
35.
go back to reference Polson KA, Brogdon WG, Rawlins SC, Chadee DD. Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad. Rev Panam Salud Publica. 2012;32:1–8.CrossRefPubMed Polson KA, Brogdon WG, Rawlins SC, Chadee DD. Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad. Rev Panam Salud Publica. 2012;32:1–8.CrossRefPubMed
36.
go back to reference Yates WW. Effect of temperature on the insecticidal action of mosquito larvicides. Mosq News. 1950;10:202–4. Yates WW. Effect of temperature on the insecticidal action of mosquito larvicides. Mosq News. 1950;10:202–4.
37.
go back to reference George L, Lenhart A, Toledo J, Lazaro A, Han WW, Velayudhan R, Runge Ranzinger S, et al. Community-effectiveness of temephos for dengue vector control: a systematic literature review. PLoS Negl Trop Dis. 2015;9:e0004006.CrossRefPubMedPubMedCentral George L, Lenhart A, Toledo J, Lazaro A, Han WW, Velayudhan R, Runge Ranzinger S, et al. Community-effectiveness of temephos for dengue vector control: a systematic literature review. PLoS Negl Trop Dis. 2015;9:e0004006.CrossRefPubMedPubMedCentral
38.
go back to reference National Institute of Malaria Research (ICMR). Seven point action plan for malaria control in urban areas. MRC Technical Information Series No. 003/1996. p. 15. National Institute of Malaria Research (ICMR). Seven point action plan for malaria control in urban areas. MRC Technical Information Series No. 003/1996. p. 15.
Metadata
Title
Overhead tank is the potential breeding habitat of Anopheles stephensi in an urban transmission setting of Chennai, India
Authors
Shalu Thomas
Sangamithra Ravishankaran
Johnson A. Justin
Aswin Asokan
Manu T. Mathai
Neena Valecha
Matthew B. Thomas
Alex Eapen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1321-7

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue