Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Cysteamine broadly improves the anti-plasmodial activity of artemisinins against murine blood stage and cerebral malaria

Authors: Neda Moradin, Sabrina Torre, Susan Gauthier, Mifong Tam, Jalal Hawari, Kirsten Vandercruyssen, Bart De Spiegeleer, Anny Fortin, Mary M. Stevenson, Philippe Gros

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

The potential emergence and spread of resistance to artemisinins in the Plasmodium falciparum malaria parasite constitutes a major global health threat. Hence, improving the efficacy of artemisinins and of artemisinin-based combination therapy (ACT) represents a major short-term goal in the global fight against malaria. Mice defective in the enzyme pantetheinase (Vnn3) show increased susceptibility to blood-stage malaria (increased parasitaemia, reduced survival), and supplementation of Vnn3 mutants with the reaction product of pantetheinase, cysteamine, corrects in part the malaria-susceptibility phenotype of the mutants. Cysteamine (Cys) is a small, naturally occurring amino-thiol that has very low toxicity in vivo and is approved for clinical use in the life-long treatment of the kidney disorder nephropathic cystinosis.

Methods

The ability of Cys to improve the anti-plasmodial activity of different clinically used artemisinins was tested. The effect of different CYS/ART combinations on malarial phenotypes (parasite blood-stage replication, overall and survival from lethal infection) was assessed in a series of in vivo experiments using Plasmodium strains that induce either blood-stage (Plasmodium chabaudi AS) or cerebral disease (Plasmodium berghei ANKA). This was also evaluated in an ex vivo experimental protocol that directly assesses the effect of such drug combinations on the viability of Plasmodium parasites, as measured by the ability of tested parasites to induce a productive infection in vivo in otherwise naïve animals.

Results

Cys is found to potentiate the anti-plasmodial activity of artesunate, artemether, and arteether, towards the blood-stage malaria parasite P. chabaudi AS. Ex vivo experiments, indicate that potentiation of the anti-plasmodial activity of artemisinins by Cys is direct and does not require the presence of host factors. In addition, potentiation occurs at sub-optimal concentrations of artemisinins and Cys that on their own have little or no effect on parasite growth. Cys also dramatically enhances the efficacy and protective effect of artemisinins against cerebral malaria induced by infection with the P. berghei ANKA parasite.

Conclusion

These findings indicate that inclusion of Cys in current formulations of ACT, or its use as adjunct therapy could improve the anti-plasmodial activity of artemisinin, decrease mortality in cerebral malaria patients, and prevent or delay the development and spread of artemisinin resistance.
Appendix
Available only for authorised users
Literature
2.
go back to reference Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. J Clin Invest. 2008;118:1266–76.CrossRefPubMedPubMedCentral Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. J Clin Invest. 2008;118:1266–76.CrossRefPubMedPubMedCentral
4.
5.
go back to reference Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009;7:864–74.PubMedPubMedCentral Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009;7:864–74.PubMedPubMedCentral
7.
go back to reference Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, et al. Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol. 2010;8:272–80.CrossRefPubMed Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, et al. Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol. 2010;8:272–80.CrossRefPubMed
8.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral
9.
go back to reference Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–65.CrossRefPubMed Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–65.CrossRefPubMed
10.
go back to reference Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:2619–20.CrossRefPubMed Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:2619–20.CrossRefPubMed
11.
go back to reference Krishna S, Kremsner PG. Antidogmatic approaches to artemisinin resistance: reappraisal as treatment failure with artemisinin combination therapy. Trends Parasitol. 2013;29:313–7.CrossRefPubMed Krishna S, Kremsner PG. Antidogmatic approaches to artemisinin resistance: reappraisal as treatment failure with artemisinin combination therapy. Trends Parasitol. 2013;29:313–7.CrossRefPubMed
12.
go back to reference Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.CrossRefPubMedPubMedCentral Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.CrossRefPubMedPubMedCentral
13.
go back to reference Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:226–34.CrossRefPubMedPubMedCentral Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:226–34.CrossRefPubMedPubMedCentral
14.
go back to reference Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.CrossRefPubMed Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.CrossRefPubMed
15.
go back to reference Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.CrossRefPubMedPubMedCentral Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.CrossRefPubMedPubMedCentral
16.
go back to reference Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:431–5.CrossRefPubMed Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:431–5.CrossRefPubMed
17.
go back to reference Bongfen SE, Laroque A, Berghout J, Gros P. Genetic and genomic analyses of host-pathogen interactions in malaria. Trends Parasitol. 2009;25:417–22.CrossRefPubMed Bongfen SE, Laroque A, Berghout J, Gros P. Genetic and genomic analyses of host-pathogen interactions in malaria. Trends Parasitol. 2009;25:417–22.CrossRefPubMed
19.
20.
go back to reference Lamb TJ, Brown DE, Potocnik AJ, Langhorne J. Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med. 2006;8:1–22.CrossRefPubMed Lamb TJ, Brown DE, Potocnik AJ, Langhorne J. Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med. 2006;8:1–22.CrossRefPubMed
21.
go back to reference Longley R, Smith C, Fortin A, Berghout J, McMorran B, Burgio G, et al. Host resistance to malaria: using mouse models to explore the host response. Mamm Genome. 2011;22:32–42.CrossRefPubMed Longley R, Smith C, Fortin A, Berghout J, McMorran B, Burgio G, et al. Host resistance to malaria: using mouse models to explore the host response. Mamm Genome. 2011;22:32–42.CrossRefPubMed
22.
go back to reference Smith CM, Jerkovic A, Puy H, Winship I, Deybach JC, Gouya L, et al. Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood. 2015;125:534–41.CrossRefPubMedPubMedCentral Smith CM, Jerkovic A, Puy H, Winship I, Deybach JC, Gouya L, et al. Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood. 2015;125:534–41.CrossRefPubMedPubMedCentral
23.
go back to reference Min-Oo G, Fortin A, Pitari G, Tam M, Stevenson MM, Gros P. Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med. 2007;204:511–24.CrossRefPubMedPubMedCentral Min-Oo G, Fortin A, Pitari G, Tam M, Stevenson MM, Gros P. Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med. 2007;204:511–24.CrossRefPubMedPubMedCentral
24.
go back to reference Min-Oo G, Ayi K, Bongfen SE, Tam M, Radovanovic I, Gauthier S, et al. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium. Exp Parasitol. 2010;125:315–24.CrossRefPubMedPubMedCentral Min-Oo G, Ayi K, Bongfen SE, Tam M, Radovanovic I, Gauthier S, et al. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium. Exp Parasitol. 2010;125:315–24.CrossRefPubMedPubMedCentral
25.
go back to reference Kleta R, Gahl WA. Pharmacological treatment of nephropathic cystinosis with cysteamine. Expert Opin Pharmacother. 2004;5:2255–62.CrossRefPubMed Kleta R, Gahl WA. Pharmacological treatment of nephropathic cystinosis with cysteamine. Expert Opin Pharmacother. 2004;5:2255–62.CrossRefPubMed
26.
go back to reference Min-Oo G, Fortin A, Poulin JF, Gros P. Cysteamine, the molecule used to treat cystinosis, potentiates the antimalarial efficacy of artemisinin. Antimicrob Agents Chemother. 2010;54:3262–70.CrossRefPubMedPubMedCentral Min-Oo G, Fortin A, Poulin JF, Gros P. Cysteamine, the molecule used to treat cystinosis, potentiates the antimalarial efficacy of artemisinin. Antimicrob Agents Chemother. 2010;54:3262–70.CrossRefPubMedPubMedCentral
27.
go back to reference Laroque A, Min-Oo G, Tam M, Radovanovic I, Stevenson MM, Gros P. Genetic control of susceptibility to infection with Plasmodium chabaudi chabaudi AS in inbred mouse strains. Genes Immun. 2012;13:155–63.CrossRefPubMed Laroque A, Min-Oo G, Tam M, Radovanovic I, Stevenson MM, Gros P. Genetic control of susceptibility to infection with Plasmodium chabaudi chabaudi AS in inbred mouse strains. Genes Immun. 2012;13:155–63.CrossRefPubMed
28.
go back to reference Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM, Gros P. Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc Natl Acad Sci USA. 2001;98:10793–8.CrossRefPubMedPubMedCentral Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM, Gros P. Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc Natl Acad Sci USA. 2001;98:10793–8.CrossRefPubMedPubMedCentral
29.
go back to reference Torre S, Faucher SP, Fodil N, Bongfen SE, Berghout J, Schwartzentruber JA, et al. THEMIS is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect Immun. 2015;83:759–68.CrossRefPubMedPubMedCentral Torre S, Faucher SP, Fodil N, Bongfen SE, Berghout J, Schwartzentruber JA, et al. THEMIS is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect Immun. 2015;83:759–68.CrossRefPubMedPubMedCentral
30.
go back to reference Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog. 2013;9:e1003491.CrossRefPubMedPubMedCentral Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog. 2013;9:e1003491.CrossRefPubMedPubMedCentral
31.
go back to reference Berghout J, Min-Oo G, Tam M, Gauthier S, Stevenson MM, Gros P. Identification of a novel cerebral malaria susceptibility locus (Berr5) on mouse chromosome 19. Genes Immun. 2010;11:310–8.CrossRefPubMed Berghout J, Min-Oo G, Tam M, Gauthier S, Stevenson MM, Gros P. Identification of a novel cerebral malaria susceptibility locus (Berr5) on mouse chromosome 19. Genes Immun. 2010;11:310–8.CrossRefPubMed
32.
go back to reference Thanh NX, Trung TN, Phong NC, Quang HH, Dai B, Shanks GD, et al. The efficacy and tolerability of artemisinin-piperaquine (Artequick(R)) versus artesunate-amodiaquine (Coarsucam) for the treatment of uncomplicated Plasmodium falciparum malaria in south-central Vietnam. Malar J. 2012;11:217.CrossRefPubMedPubMedCentral Thanh NX, Trung TN, Phong NC, Quang HH, Dai B, Shanks GD, et al. The efficacy and tolerability of artemisinin-piperaquine (Artequick(R)) versus artesunate-amodiaquine (Coarsucam) for the treatment of uncomplicated Plasmodium falciparum malaria in south-central Vietnam. Malar J. 2012;11:217.CrossRefPubMedPubMedCentral
33.
go back to reference Kotecka BM, Rieckmann KH, Davis TM, Batty KT, Ilett KF. Comparison of bioassay and high performance liquid chromatographic assay of artesunate and dihydroartemisinin in plasma. Acta Trop. 2003;87:371–5.CrossRefPubMed Kotecka BM, Rieckmann KH, Davis TM, Batty KT, Ilett KF. Comparison of bioassay and high performance liquid chromatographic assay of artesunate and dihydroartemisinin in plasma. Acta Trop. 2003;87:371–5.CrossRefPubMed
34.
go back to reference Batty KT, Davis TM, Thu LT, Binh TQ, Anh TK, Ilett KF. Selective high-performance liquid chromatographic determination of artesunate and alpha- and beta-dihydroartemisinin in patients with falciparum malaria. J Chromatogr B Biomed Appl. 1996;677:345–50.CrossRefPubMed Batty KT, Davis TM, Thu LT, Binh TQ, Anh TK, Ilett KF. Selective high-performance liquid chromatographic determination of artesunate and alpha- and beta-dihydroartemisinin in patients with falciparum malaria. J Chromatogr B Biomed Appl. 1996;677:345–50.CrossRefPubMed
36.
go back to reference Isah MB, Ibrahim MA. The role of antioxidants treatment on the pathogenesis of malarial infections: a review. Parasitol Res. 2014;113(3):801–9.CrossRefPubMed Isah MB, Ibrahim MA. The role of antioxidants treatment on the pathogenesis of malarial infections: a review. Parasitol Res. 2014;113(3):801–9.CrossRefPubMed
37.
go back to reference Antoine T, Fisher N, Amewu R, O’Neill PM, Ward SA, Biagini GA. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J Antimicrob Chemother. 2014;69:1005–16.CrossRefPubMedPubMedCentral Antoine T, Fisher N, Amewu R, O’Neill PM, Ward SA, Biagini GA. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J Antimicrob Chemother. 2014;69:1005–16.CrossRefPubMedPubMedCentral
38.
go back to reference Efferth T, Kaina B. Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol. 2010;40:405–21.CrossRefPubMed Efferth T, Kaina B. Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol. 2010;40:405–21.CrossRefPubMed
39.
go back to reference Gangoiti JA, Fidler M, Cabrera BL, Schneider JA, Barshop BA, Dohil R. Pharmacokinetics of enteric-coated cysteamine bitartrate in healthy adults: a pilot study. Br J Clin Pharmacol. 2010;70:376–82.CrossRefPubMedPubMedCentral Gangoiti JA, Fidler M, Cabrera BL, Schneider JA, Barshop BA, Dohil R. Pharmacokinetics of enteric-coated cysteamine bitartrate in healthy adults: a pilot study. Br J Clin Pharmacol. 2010;70:376–82.CrossRefPubMedPubMedCentral
40.
go back to reference Belldina EB, Huang MY, Schneider JA, Brundage RC, Tracy TS. Steady-state pharmacokinetics and pharmacodynamics of cysteamine bitartrate in paediatric nephropathic cystinosis patients. Br J Clin Pharmacol. 2003;56:520–5.CrossRefPubMedPubMedCentral Belldina EB, Huang MY, Schneider JA, Brundage RC, Tracy TS. Steady-state pharmacokinetics and pharmacodynamics of cysteamine bitartrate in paediatric nephropathic cystinosis patients. Br J Clin Pharmacol. 2003;56:520–5.CrossRefPubMedPubMedCentral
41.
go back to reference Dohil R, Fidler M, Gangoiti JA, Kaskel F, Schneider JA, Barshop BA. Twice-daily cysteamine bitartrate therapy for children with cystinosis. J Pediatr. 2010;156(71–75):e71–3.CrossRef Dohil R, Fidler M, Gangoiti JA, Kaskel F, Schneider JA, Barshop BA. Twice-daily cysteamine bitartrate therapy for children with cystinosis. J Pediatr. 2010;156(71–75):e71–3.CrossRef
42.
go back to reference Fidler MC, Barshop BA, Gangoiti JA, Deutsch R, Martin M, Schneider JA, et al. Pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion. Br J Clin Pharmacol. 2007;63:36–40.CrossRefPubMedPubMedCentral Fidler MC, Barshop BA, Gangoiti JA, Deutsch R, Martin M, Schneider JA, et al. Pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion. Br J Clin Pharmacol. 2007;63:36–40.CrossRefPubMedPubMedCentral
43.
go back to reference Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–4.CrossRefPubMed Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–4.CrossRefPubMed
44.
go back to reference Mishra S, Karmodiya K, Surolia N, Surolia A. Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorg Med Chem. 2008;16:2894–902.CrossRefPubMed Mishra S, Karmodiya K, Surolia N, Surolia A. Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorg Med Chem. 2008;16:2894–902.CrossRefPubMed
45.
go back to reference Stickles AM, Ting LM, Morrisey JM, Li Y, Mather MW, Meermeier E, et al. Inhibition of cytochrome bc1 as a strategy for single-dose, multi-stage antimalarial therapy. Am J Trop Med Hyg. 2015;92:1195–201.CrossRefPubMed Stickles AM, Ting LM, Morrisey JM, Li Y, Mather MW, Meermeier E, et al. Inhibition of cytochrome bc1 as a strategy for single-dose, multi-stage antimalarial therapy. Am J Trop Med Hyg. 2015;92:1195–201.CrossRefPubMed
46.
go back to reference Nilsen A, LaCrue AN, White KL, Forquer IP, Cross RM, Marfurt J, et al. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci Transl Med. 2013;5:177ra37.CrossRefPubMedPubMedCentral Nilsen A, LaCrue AN, White KL, Forquer IP, Cross RM, Marfurt J, et al. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci Transl Med. 2013;5:177ra37.CrossRefPubMedPubMedCentral
47.
go back to reference Malmquist NA, Sundriyal S, Caron J, Chen P, Witkowski B, Menard D, et al. Histone methyltransferase inhibitors are orally bioavailable, fast-acting molecules with activity against different species causing malaria in humans. Antimicrob Agents Chemother. 2015;59:950–9.CrossRefPubMedPubMedCentral Malmquist NA, Sundriyal S, Caron J, Chen P, Witkowski B, Menard D, et al. Histone methyltransferase inhibitors are orally bioavailable, fast-acting molecules with activity against different species causing malaria in humans. Antimicrob Agents Chemother. 2015;59:950–9.CrossRefPubMedPubMedCentral
48.
go back to reference Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, et al. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother. 2009;53:1100–6.CrossRefPubMedPubMedCentral Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, et al. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother. 2009;53:1100–6.CrossRefPubMedPubMedCentral
Metadata
Title
Cysteamine broadly improves the anti-plasmodial activity of artemisinins against murine blood stage and cerebral malaria
Authors
Neda Moradin
Sabrina Torre
Susan Gauthier
Mifong Tam
Jalal Hawari
Kirsten Vandercruyssen
Bart De Spiegeleer
Anny Fortin
Mary M. Stevenson
Philippe Gros
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1317-3

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue