Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Localization and interactions of Plasmodium falciparum SWIB/MDM2 homologues

Authors: Warren Antonio Vieira, Thérèsa L. Coetzer

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Malaria remains a global health problem and the majority of deaths are caused by Plasmodium falciparum parasites. Due to the rapid emergence of drug-resistant strains, novel avenues of research on the biology of the parasite are needed. The massive proliferation of asexual, intra-erythrocytic parasites every 48 h could kill the human host prior to transmission of slow-developing gametocytes to the mosquito vector. A self-induced P. falciparum programmed cell death mechanism has been hypothesized to maintain this balance between the parasite and its two hosts, but molecular participants of the cell death pathway in P. falciparum have not been characterized. Proteins with SWIB/MDM2 domains play a key role in metazoan programmed cell death and this study provides the first evaluation of two parasite SWIB/MDM2 homologues, PF3D7_0518200 (PfMDM2) and PF3D7_0611400 (PfSWIB).

Methods

The function of these proteins was assessed by predicting their structural topology with the aid of bioinformatics and determining their location within live transgenic parasites, expressing green fluorescent protein-tagged PfMDM2 and PfSWIB under normal and elevated temperatures, which mimic fever and which are known to induce a programmed cell death response. Additionally, P. falciparum phage display library technology was used to identify binding partners for the two parasite SWIB/MDM2 domains.

Results

Structural features of the SWIB/MDM2 domains of PfMDM2 and PfSWIB, suggested that they are chromatin remodelling factors. The N-terminal signal sequence of PfMDM2 directed the protein to the mitochondrion under both normal and heat stress conditions. Plasmodium falciparum phage display library technology revealed that the C-terminal SWIB/MDM2 domain of PfMDM2 interacted with a conserved protein containing a LisH domain. PfSWIB localized to the cytoplasm under normal growth conditions, while approximately 10 % of the heat-stressed trophozoite-stage parasites presented a rapid but short-lived nuclear localization pattern. Two PfSWIB binding partners, a putative Aurora-related kinase and a member of the inner membrane complex, were identified.

Conclusion

These novel data provide insight into the function of two parasite SWIB/MDM2 homologues and suggest that PfMDM2 plays a role within the mitochondrion and that PfSWIB is involved in a stage-specific, heat-stress, response pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.PubMedCrossRef Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.PubMedCrossRef
2.
go back to reference Deponte M, Becker K. Plasmodium falciparum—do killers commit suicide? Trends Parasitol. 2004;20:165–9.PubMedCrossRef Deponte M, Becker K. Plasmodium falciparum—do killers commit suicide? Trends Parasitol. 2004;20:165–9.PubMedCrossRef
3.
go back to reference Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem. 1997;272:3961–6.PubMedCrossRef Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem. 1997;272:3961–6.PubMedCrossRef
4.
go back to reference Picot S, Burnod J, Bracchi V, Chumpitazi BF, Ambroise-Thomas P. Apoptosis related to chloroquine sensitivity of the human malaria parasite Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1997;91:590–1.PubMedCrossRef Picot S, Burnod J, Bracchi V, Chumpitazi BF, Ambroise-Thomas P. Apoptosis related to chloroquine sensitivity of the human malaria parasite Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1997;91:590–1.PubMedCrossRef
7.
go back to reference Wu Y, Wang X, Liu X, Wang Y. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res. 2003;13:601–16.PubMedPubMedCentralCrossRef Wu Y, Wang X, Liu X, Wang Y. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res. 2003;13:601–16.PubMedPubMedCentralCrossRef
8.
go back to reference Coetzer TL, Durand PM, Nedelcu AM. Genomic evidence for elements of a programmed cell death pathway in Plasmodium: exploiting programmed parasite death for malaria control? Blood. 2010;116:4226. Coetzer TL, Durand PM, Nedelcu AM. Genomic evidence for elements of a programmed cell death pathway in Plasmodium: exploiting programmed parasite death for malaria control? Blood. 2010;116:4226.
9.
go back to reference Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274:948–53.PubMedCrossRef Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274:948–53.PubMedCrossRef
10.
go back to reference Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45.PubMedCrossRef Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45.PubMedCrossRef
11.
go back to reference Shadfan M, Lopez-Pajares V, Yuan ZM. MDM2 and MDMX: alone and together in regulation of p53. Transl Cancer Res. 2012;1:88–99.PubMedPubMedCentral Shadfan M, Lopez-Pajares V, Yuan ZM. MDM2 and MDMX: alone and together in regulation of p53. Transl Cancer Res. 2012;1:88–99.PubMedPubMedCentral
12.
go back to reference Wilson BG, Roberts CWM. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92.PubMedCrossRef Wilson BG, Roberts CWM. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92.PubMedCrossRef
13.
go back to reference De La Serna IL, Carlson KA, Hill DA, Guidi CJ, Stephenson RO, Sif S, et al. Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol Cell Biol. 2000;20:2839–51.PubMedCentralCrossRef De La Serna IL, Carlson KA, Hill DA, Guidi CJ, Stephenson RO, Sif S, et al. Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol Cell Biol. 2000;20:2839–51.PubMedCentralCrossRef
14.
go back to reference Shivaswamy S, Iyer VR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008;28:2221–34.PubMedPubMedCentralCrossRef Shivaswamy S, Iyer VR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008;28:2221–34.PubMedPubMedCentralCrossRef
15.
go back to reference Park JH, Park EJ, Hur SK, Kim S, Kwon J. Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair. 2009;8:29–39.PubMedCrossRef Park JH, Park EJ, Hur SK, Kim S, Kwon J. Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair. 2009;8:29–39.PubMedCrossRef
16.
go back to reference Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem. 2002;277:22330–7.PubMedCrossRef Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem. 2002;277:22330–7.PubMedCrossRef
17.
go back to reference Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH. BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem. 2008;283:11924–34.PubMedCrossRef Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH. BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem. 2008;283:11924–34.PubMedCrossRef
18.
go back to reference Bennett-Lovsey R, Hart SE, Shirai H, Mizuguchi K. The SWIB and the MDM2 domains are homologous and share a common fold. Bioinformatic. 2002;18:626–30.CrossRef Bennett-Lovsey R, Hart SE, Shirai H, Mizuguchi K. The SWIB and the MDM2 domains are homologous and share a common fold. Bioinformatic. 2002;18:626–30.CrossRef
19.
go back to reference Melonek J, Matros A, Trosch M, Mock HP, Krupinska K. The core of chloroplast nucleoids contains architectural SWIB domain proteins. Plant Cell. 2012;24:3060–73.PubMedPubMedCentralCrossRef Melonek J, Matros A, Trosch M, Mock HP, Krupinska K. The core of chloroplast nucleoids contains architectural SWIB domain proteins. Plant Cell. 2012;24:3060–73.PubMedPubMedCentralCrossRef
21.
go back to reference Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
23.
go back to reference Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.PubMedCrossRef Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.PubMedCrossRef
24.
go back to reference Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4:363–71.PubMedCrossRef Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4:363–71.PubMedCrossRef
25.
go back to reference Lambert C, Léonard N, De Bolle X, Depiereux E. ESyPred3D: prediction of proteins 3D structures. Bioinformatics. 2002;18:1250–6.PubMedCrossRef Lambert C, Léonard N, De Bolle X, Depiereux E. ESyPred3D: prediction of proteins 3D structures. Bioinformatics. 2002;18:1250–6.PubMedCrossRef
31.
go back to reference Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA. 2009;106:10171–6.PubMedPubMedCentralCrossRef Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA. 2009;106:10171–6.PubMedPubMedCentralCrossRef
32.
go back to reference Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241:779–86.PubMedCrossRef Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241:779–86.PubMedCrossRef
33.
go back to reference Brameier M, Krings A, Maccallum R. NucPred-predicting nuclear localization of proteins. Bioinformatics. 2007;23:1159–60.PubMedCrossRef Brameier M, Krings A, Maccallum R. NucPred-predicting nuclear localization of proteins. Bioinformatics. 2007;23:1159–60.PubMedCrossRef
34.
go back to reference Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, et al. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science. 2003;299:705–8.PubMedCrossRef Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, et al. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science. 2003;299:705–8.PubMedCrossRef
35.
go back to reference Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E, Lang-Unnasch N, et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA. 1998;95:12352–7.PubMedPubMedCentralCrossRef Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E, Lang-Unnasch N, et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA. 1998;95:12352–7.PubMedPubMedCentralCrossRef
36.
go back to reference Zuegge J, Ralph S, Schmuker M, Mcfadden GI, Schneider G. Deciphering apicoplast targeting signals—feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene. 2001;280:19–26.PubMedCrossRef Zuegge J, Ralph S, Schmuker M, Mcfadden GI, Schneider G. Deciphering apicoplast targeting signals—feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene. 2001;280:19–26.PubMedCrossRef
37.
go back to reference Bender A, Van Dooren GG, Ralph SA, Mcfadden GI, Schneider G. Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol. 2003;132:59–66.PubMedCrossRef Bender A, Van Dooren GG, Ralph SA, Mcfadden GI, Schneider G. Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol. 2003;132:59–66.PubMedCrossRef
38.
39.
go back to reference Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. Am Soc Parasitol. 1979;65:418–20.CrossRef Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. Am Soc Parasitol. 1979;65:418–20.CrossRef
40.
go back to reference Cowman AF, Crabb BS, Maier AG, Tonkin CJ, Healer J, Gibson P, et al. Preparation of P. falciparum genomic DNA. In: Moll K, Ljugstöm I, Perlmann H, Scherf A, Wahlgren M, editors. Methods in Malaria Research. Fifth ed. Paris: Malaria Research and Reference Reagent Resource Center. 2008. p. 287–8. Cowman AF, Crabb BS, Maier AG, Tonkin CJ, Healer J, Gibson P, et al. Preparation of P. falciparum genomic DNA. In: Moll K, Ljugstöm I, Perlmann H, Scherf A, Wahlgren M, editors. Methods in Malaria Research. Fifth ed. Paris: Malaria Research and Reference Reagent Resource Center. 2008. p. 287–8.
41.
go back to reference Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.PubMedCrossRef Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.PubMedCrossRef
42.
go back to reference Lauterbach S, Lanzillotti R, Coetzer T. Construction and use of Plasmodium falciparum phage display libraries to identify host parasite interactions. Malar J. 2003;2:47.PubMedPubMedCentralCrossRef Lauterbach S, Lanzillotti R, Coetzer T. Construction and use of Plasmodium falciparum phage display libraries to identify host parasite interactions. Malar J. 2003;2:47.PubMedPubMedCentralCrossRef
43.
go back to reference Engelbrecht D, Coetzer TL. Turning up the heat: heat stress induces markers of programmed cell death in Plasmodium falciparum in vitro. Cell Death Dis. 2013;4:e971.PubMedPubMedCentralCrossRef Engelbrecht D, Coetzer TL. Turning up the heat: heat stress induces markers of programmed cell death in Plasmodium falciparum in vitro. Cell Death Dis. 2013;4:e971.PubMedPubMedCentralCrossRef
44.
go back to reference Torrentino-Madamet M, Desplans J, Travaille C, James Y, Parzy D. Microaerophilic respiratory metabolism of Plasmodium falciparum mitochondrion as a drug target. Curr Mol Med. 2010;10:29–46.PubMedCrossRef Torrentino-Madamet M, Desplans J, Travaille C, James Y, Parzy D. Microaerophilic respiratory metabolism of Plasmodium falciparum mitochondrion as a drug target. Curr Mol Med. 2010;10:29–46.PubMedCrossRef
45.
go back to reference Tonkin CJ, Van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;137:13–21.PubMedCrossRef Tonkin CJ, Van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;137:13–21.PubMedCrossRef
49.
go back to reference Freedman DA, Epstein CB, Roth JC, Levine AJ. A genetic approach to mapping the p53 binding site in the MDM2 protein. Mol Med. 1997;3:248–59.PubMedPubMedCentral Freedman DA, Epstein CB, Roth JC, Levine AJ. A genetic approach to mapping the p53 binding site in the MDM2 protein. Mol Med. 1997;3:248–59.PubMedPubMedCentral
51.
go back to reference Geourjon C, Combet C, Blanchet C, Deléage G. Identification of related proteins with weak sequence identity using secondary structure information. Protein Sci. 2001;10:788–97.PubMedPubMedCentralCrossRef Geourjon C, Combet C, Blanchet C, Deléage G. Identification of related proteins with weak sequence identity using secondary structure information. Protein Sci. 2001;10:788–97.PubMedPubMedCentralCrossRef
52.
go back to reference López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genom. 2011;12:587.CrossRef López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genom. 2011;12:587.CrossRef
53.
go back to reference Florens L, Liu X, Wang Y, Yang S, Schwartz O, Peglar M, et al. Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol Biochem Parasitol. 2004;135:1–11.PubMedCrossRef Florens L, Liu X, Wang Y, Yang S, Schwartz O, Peglar M, et al. Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol Biochem Parasitol. 2004;135:1–11.PubMedCrossRef
54.
go back to reference Catalano A. O’day D. Nucleoplasmic/nucleolar translocation and identification of a nuclear localization signal (NLS) in Dictyostelium BAF60a/SMARCD1 homologue Snf12. Histochem Cell Biol. 2012;138:515–30.PubMedCrossRef Catalano A. O’day D. Nucleoplasmic/nucleolar translocation and identification of a nuclear localization signal (NLS) in Dictyostelium BAF60a/SMARCD1 homologue Snf12. Histochem Cell Biol. 2012;138:515–30.PubMedCrossRef
55.
go back to reference Kono M, Herrmann S, Loughran NB, Cabrera A, Engelberg K, Lehmann C, et al. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Mol Biol Evol. 2012;29:2113–32.PubMedCrossRef Kono M, Herrmann S, Loughran NB, Cabrera A, Engelberg K, Lehmann C, et al. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Mol Biol Evol. 2012;29:2113–32.PubMedCrossRef
56.
go back to reference Tompa P. Intrinsically unstructured proteins. Trends Biol Sci. 2002;27:527–33.CrossRef Tompa P. Intrinsically unstructured proteins. Trends Biol Sci. 2002;27:527–33.CrossRef
57.
go back to reference Cairns BR, Levinson RS, Yamamoto KR, Kornberg RD. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 1996;10:2131–44.PubMedCrossRef Cairns BR, Levinson RS, Yamamoto KR, Kornberg RD. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 1996;10:2131–44.PubMedCrossRef
58.
go back to reference Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511.PubMedCrossRef Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511.PubMedCrossRef
59.
go back to reference Lanzillotti R, Coetzer TL. Phage display: a useful tool for malaria research? Trends Parasitol. 2008;24:18–23.PubMedCrossRef Lanzillotti R, Coetzer TL. Phage display: a useful tool for malaria research? Trends Parasitol. 2008;24:18–23.PubMedCrossRef
60.
go back to reference Emes RD, Ponting CP. A new sequence motif linking lissencephaly, Treacher Collins and oral–facial–digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet. 2001;10:2813–20.PubMedCrossRef Emes RD, Ponting CP. A new sequence motif linking lissencephaly, Treacher Collins and oral–facial–digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet. 2001;10:2813–20.PubMedCrossRef
61.
go back to reference Wei Y, Jin J, Harper JW. The cyclin E/Cdk2 substrate and cajal body component p220NPAT activates histone transcription through a novel lish-like domain. Mol Cell Biol. 2003;23:3669–80.PubMedPubMedCentralCrossRef Wei Y, Jin J, Harper JW. The cyclin E/Cdk2 substrate and cajal body component p220NPAT activates histone transcription through a novel lish-like domain. Mol Cell Biol. 2003;23:3669–80.PubMedPubMedCentralCrossRef
62.
go back to reference Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell. 2002;9:611–23.PubMedCrossRef Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell. 2002;9:611–23.PubMedCrossRef
63.
go back to reference Humphrey GW, Wang Y, Russanova VR, Hirai T, Qin J, Nakatani Y, et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J Biol Chem. 2001;276:6817–24.PubMedCrossRef Humphrey GW, Wang Y, Russanova VR, Hirai T, Qin J, Nakatani Y, et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J Biol Chem. 2001;276:6817–24.PubMedCrossRef
64.
go back to reference Cockell M, Renauld H, Watt P, Gasser SM. Sif2p interacts with the Sir4p amino-terminal domain and antagonizes telomeric silencing in yeast. Curr Biol. 1998;8:787–90.PubMedCrossRef Cockell M, Renauld H, Watt P, Gasser SM. Sif2p interacts with the Sir4p amino-terminal domain and antagonizes telomeric silencing in yeast. Curr Biol. 1998;8:787–90.PubMedCrossRef
66.
go back to reference Reininger L, Wilkes JM, Bourgade H, Miranda-Saavedra D, Doerig C. An essential Aurora-related kinase transiently associates with spindle pole bodies during Plasmodium falciparum erythrocytic schizogony. Mol Microbiol. 2011;79:205–21.PubMedPubMedCentralCrossRef Reininger L, Wilkes JM, Bourgade H, Miranda-Saavedra D, Doerig C. An essential Aurora-related kinase transiently associates with spindle pole bodies during Plasmodium falciparum erythrocytic schizogony. Mol Microbiol. 2011;79:205–21.PubMedPubMedCentralCrossRef
67.
go back to reference Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem. 2004;279:52175–82.PubMedCrossRef Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem. 2004;279:52175–82.PubMedCrossRef
68.
go back to reference Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet. 2004;36:55–62.PubMedCrossRef Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet. 2004;36:55–62.PubMedCrossRef
69.
go back to reference Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, et al. Mitotic phosphorylation of histone H3 Is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell. 2000;102:279–91.PubMedCrossRef Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, et al. Mitotic phosphorylation of histone H3 Is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell. 2000;102:279–91.PubMedCrossRef
70.
go back to reference Goto H, Yasui Y, Nigg EA, Inagaki M. Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells. 2002;7:11–7.PubMedCrossRef Goto H, Yasui Y, Nigg EA, Inagaki M. Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells. 2002;7:11–7.PubMedCrossRef
71.
go back to reference Porter H, Gamette MJ, Cortes-Hernandez DG, Jensen JB. Asexual blood stages of Plasmodium falciparum exhibit signs of secondary necrosis, but not classical apoptosis after exposure to febrile temperature (40 °C). J Parasitol. 2008;94:473–80.PubMedCrossRef Porter H, Gamette MJ, Cortes-Hernandez DG, Jensen JB. Asexual blood stages of Plasmodium falciparum exhibit signs of secondary necrosis, but not classical apoptosis after exposure to febrile temperature (40 °C). J Parasitol. 2008;94:473–80.PubMedCrossRef
72.
go back to reference Long HY, Lell B, Dietz K, Kremsner PG. Plasmodium falciparum: in vitro growth inhibition by febrile temperatures. Parasitol Res. 2001;87:553–5.PubMedCrossRef Long HY, Lell B, Dietz K, Kremsner PG. Plasmodium falciparum: in vitro growth inhibition by febrile temperatures. Parasitol Res. 2001;87:553–5.PubMedCrossRef
73.
go back to reference Hsu SF, Lai HC, Jinn TL. Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol. 2010;153:773–84.PubMedPubMedCentralCrossRef Hsu SF, Lai HC, Jinn TL. Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol. 2010;153:773–84.PubMedPubMedCentralCrossRef
74.
go back to reference Al-Whaibi MH. Plant heat-shock proteins: a mini review. J King Saud Univ. 2011;23:139–50.CrossRef Al-Whaibi MH. Plant heat-shock proteins: a mini review. J King Saud Univ. 2011;23:139–50.CrossRef
75.
go back to reference Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11:545–55.PubMedPubMedCentralCrossRef Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11:545–55.PubMedPubMedCentralCrossRef
76.
go back to reference Schlesinger MJ, Aliperti G, Kelley PM. The response of cells to heat shock. Trends Biol Sci. 1982;7:222–5.CrossRef Schlesinger MJ, Aliperti G, Kelley PM. The response of cells to heat shock. Trends Biol Sci. 1982;7:222–5.CrossRef
77.
go back to reference Corey LL, Weirich CS, Benjamin IJ, Kingston RE. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 2003;17:1392–401.PubMedPubMedCentralCrossRef Corey LL, Weirich CS, Benjamin IJ, Kingston RE. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 2003;17:1392–401.PubMedPubMedCentralCrossRef
78.
go back to reference Han Q, Lu J, Duan J, Su D, Hou X, Li F, et al. Gcn5- and Elp3-induced histone H3 acetylation regulates hsp70 gene transcription in yeast. Biochem J. 2008;409:779–88.PubMedCrossRef Han Q, Lu J, Duan J, Su D, Hou X, Li F, et al. Gcn5- and Elp3-induced histone H3 acetylation regulates hsp70 gene transcription in yeast. Biochem J. 2008;409:779–88.PubMedCrossRef
Metadata
Title
Localization and interactions of Plasmodium falciparum SWIB/MDM2 homologues
Authors
Warren Antonio Vieira
Thérèsa L. Coetzer
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-1065-9

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue