Skip to main content
Top
Published in: Malaria Journal 1/2003

Open Access 01-12-2003 | Methodology

Construction and use of Plasmodium falciparum phage display libraries to identify host parasite interactions

Authors: Sonja B Lauterbach, Roberto Lanzillotti, Theresa L Coetzer

Published in: Malaria Journal | Issue 1/2003

Login to get access

Abstract

Background

The development of Plasmodium falciparum within human erythrocytes induces a wide array of changes in the ultrastructure, function and antigenic properties of the host cell. Numerous proteins encoded by the parasite have been shown to interact with the erythrocyte membrane. The identification of new interactions between human erythrocyte and P. falciparum proteins has formed a key area of malaria research. To circumvent the difficulties provided by conventional protein techniques, a novel application of the phage display technology was utilised.

Methods

P. falciparum phage display libraries were created and biopanned against purified erythrocyte membrane proteins. The identification of interacting and in-frame amino acid sequences was achieved by sequencing parasite cDNA inserts and performing bioinformatic analyses in the PlasmoDB database.

Results

Following four rounds of biopanning, sequencing and bioinformatic investigations, seven P. falciparum proteins with significant binding specificity toward human erythrocyte spectrin and protein 4.1 were identified. The specificity of these P. falciparum proteins were demonstrated by the marked enrichment of the respective in-frame binding sequences from a fourth round phage display library.

Conclusion

The construction and biopanning of P. falciparum phage display expression libraries provide a novel approach for the identification of new interactions between the parasite and the erythrocyte membrane.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ridley RG: Medical need, scientific opportunity and the drive for antimalarial drugs. Nature. 2002, 415: 686-693. 10.1038/415686a.CrossRefPubMed Ridley RG: Medical need, scientific opportunity and the drive for antimalarial drugs. Nature. 2002, 415: 686-693. 10.1038/415686a.CrossRefPubMed
2.
go back to reference Cooke BM, Mohandas N, Coppel RL: The malaria-infected red blood cell: structural and functional changes. Adv Parasitol. 2001, 50: 1-86.CrossRefPubMed Cooke BM, Mohandas N, Coppel RL: The malaria-infected red blood cell: structural and functional changes. Adv Parasitol. 2001, 50: 1-86.CrossRefPubMed
4.
go back to reference Coley AM, Campanale NV, Casey JL, Hodder AN, Crewther PE, Anders RF, Tilley LM, Foley M: Rapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA 1 by combined phage display of fragments and random peptides. Protein Eng. 2001, 14: 691-698. 10.1093/protein/14.9.691.CrossRefPubMed Coley AM, Campanale NV, Casey JL, Hodder AN, Crewther PE, Anders RF, Tilley LM, Foley M: Rapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA 1 by combined phage display of fragments and random peptides. Protein Eng. 2001, 14: 691-698. 10.1093/protein/14.9.691.CrossRefPubMed
5.
go back to reference Roeffen WF, Raats JM, Teelen K, Hoet RM, Eling WM, van Venrooij WJ, Sauerwein RW: Recombinant human antibodies specific for the Pfs48/45 protein of the malaria parasite Plasmodium falciparum. J Biol Chem. 2001, 276: 19807-19811. 10.1074/jbc.M100562200.CrossRefPubMed Roeffen WF, Raats JM, Teelen K, Hoet RM, Eling WM, van Venrooij WJ, Sauerwein RW: Recombinant human antibodies specific for the Pfs48/45 protein of the malaria parasite Plasmodium falciparum. J Biol Chem. 2001, 276: 19807-19811. 10.1074/jbc.M100562200.CrossRefPubMed
6.
7.
go back to reference Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987, 162: 156-159. 10.1006/abio.1987.9999.CrossRefPubMed Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987, 162: 156-159. 10.1006/abio.1987.9999.CrossRefPubMed
8.
go back to reference Becker PS, Spiegel JE, Wolfe LC, Lux SE: High yield purification of protein 4.1 from human erythrocyte membranes. Anal Biochem. 1983, 132: 195-201.CrossRefPubMed Becker PS, Spiegel JE, Wolfe LC, Lux SE: High yield purification of protein 4.1 from human erythrocyte membranes. Anal Biochem. 1983, 132: 195-201.CrossRefPubMed
9.
go back to reference Peterson DS, Wellems TE: EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem and Parasitol. 2000, 105: 105-113. 10.1016/S0166-6851(99)00173-5.CrossRef Peterson DS, Wellems TE: EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem and Parasitol. 2000, 105: 105-113. 10.1016/S0166-6851(99)00173-5.CrossRef
Metadata
Title
Construction and use of Plasmodium falciparum phage display libraries to identify host parasite interactions
Authors
Sonja B Lauterbach
Roberto Lanzillotti
Theresa L Coetzer
Publication date
01-12-2003
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2003
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-2-47

Other articles of this Issue 1/2003

Malaria Journal 1/2003 Go to the issue