Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria

Authors: Hermann S. Pooda, Jean-Baptiste Rayaisse, Domonbabele François de Sale Hien, Thierry Lefèvre, Serge R. Yerbanga, Zakaria Bengaly, Roch K. Dabiré, Adrien M. G. Belem, Issa Sidibé, Philippe Solano, Karine Mouline

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

The success of current control tools in combatting malaria vectors is well established. However, sustained residual transmission of Plasmodium parasites persists. Mass drug administration (MDA) to humans of the endectocide ivermectin for vector control is receiving increasing attention. However, vectors feeding upon animals escape this promising approach. Zoophagy of mosquitoes sustains both the vector population and endemic population of vector-borne pathogens. Therefore, only a strategy that will combine ivermectin MDAs targeted at humans and their peridomestic animals could be successful at controlling residual malaria transmission.

Methods

Burkinabé cattle have been treated with injectable therapeutic dose of ivermectin (0.2 mg/kg of body weight) to render blood meals toxic to field representative populations of Anopheles coluzzii carrying the kdr mutation. Direct skin-feeding assays were performed from 2 to 28 days after injection (DAI) and mosquitoes were followed for their survival, ability to become gravid and fecundity. Membrane feeding assays were further performed to test if an ivermectin blood meal taken at 28 DAI impacts gametocyte establishment and development in females fed with infectious blood.

Results

The mosquitocidal effect of ivermectin is complete for 2 weeks after injection, whether 12 days cumulative mortalities were of 75 and 45 % the third and fourth weeks, respectively. The third week, a second ivermectin blood meal at sub-lethal concentrations further increased mortality to 100 %. Sub-lethal concentrations of ivermectin also significantly decreased egg production by surviving females, increasing further the detrimental effect of the drug on vector densities. Although females fitness was impaired by sub-lethal ivermectin blood meals, these did not diminish nor increase their susceptibility to infection.

Conclusion

This study demonstrates the potential of integrated MDA of ivermectin to both human and peridomestic cattle to target vector reservoirs of residual malaria transmission. Such integration lies in ‘One-Health’ efforts being implemented around the globe, and would be especially relevant in rural communities in Africa where humans are also at risk of common zoonotic diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control. Trends Parasitol. 2011;27:91–8.CrossRefPubMed Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control. Trends Parasitol. 2011;27:91–8.CrossRefPubMed
2.
go back to reference Yohannes M, Boelee E. Early biting rhythm in the Afro-tropical vector of malaria, Anopheles arabiensis, and challenges for its control in Ethiopia. Med Vet Entomol. 2012;26:103–5.CrossRefPubMed Yohannes M, Boelee E. Early biting rhythm in the Afro-tropical vector of malaria, Anopheles arabiensis, and challenges for its control in Ethiopia. Med Vet Entomol. 2012;26:103–5.CrossRefPubMed
3.
go back to reference Sougoufara S, Diedhiou SM, Doucoure S, Diagne N, Sembene PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.PubMedCentralCrossRefPubMed Sougoufara S, Diedhiou SM, Doucoure S, Diagne N, Sembene PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.PubMedCentralCrossRefPubMed
5.
go back to reference Chaccour C, Kobylinsky K, Bassat Q, Boussema T, Drakeley C, Alonso P, et al. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J. 2013;12:153.PubMedCentralCrossRefPubMed Chaccour C, Kobylinsky K, Bassat Q, Boussema T, Drakeley C, Alonso P, et al. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J. 2013;12:153.PubMedCentralCrossRefPubMed
6.
go back to reference Chaccour CJ, Rabinovich NR, Slater H, Canavati SE, Bousema T, Lacerda M, ter Kuile F, Drakeley C, Bassat Q, Foy BD, Kobylinski K. Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda. Malar J. 2015;14:243.PubMedCentralCrossRefPubMed Chaccour CJ, Rabinovich NR, Slater H, Canavati SE, Bousema T, Lacerda M, ter Kuile F, Drakeley C, Bassat Q, Foy BD, Kobylinski K. Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda. Malar J. 2015;14:243.PubMedCentralCrossRefPubMed
7.
go back to reference Shoope WL, Soll MD. Chemistry, pharmacology and safety of the macrocyclic lactones. In: Wercruysse J, Rew RS, editors. Macrocyclic lactones in antiparasitic therapy. CAB Intern; 2002. p. 1–29. Shoope WL, Soll MD. Chemistry, pharmacology and safety of the macrocyclic lactones. In: Wercruysse J, Rew RS, editors. Macrocyclic lactones in antiparasitic therapy. CAB Intern; 2002. p. 1–29.
8.
go back to reference Amazigo U. The African Programme for Onchocerciasis Control (APOC). Ann Trop Med Parasitol. 2008;102(Suppl 1):19–22.CrossRefPubMed Amazigo U. The African Programme for Onchocerciasis Control (APOC). Ann Trop Med Parasitol. 2008;102(Suppl 1):19–22.CrossRefPubMed
9.
go back to reference Ottesen EA, Hooper PJ, Bradley M, Biswas G. The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl Trop Dis. 2008;2:e317.PubMedCentralCrossRefPubMed Ottesen EA, Hooper PJ, Bradley M, Biswas G. The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl Trop Dis. 2008;2:e317.PubMedCentralCrossRefPubMed
10.
go back to reference Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, Da Silva IM, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.PubMedCentralCrossRefPubMed Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, Da Silva IM, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.PubMedCentralCrossRefPubMed
11.
go back to reference Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am J Trop Med Hyg. 2011;85:3–5.PubMedCentralCrossRefPubMed Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am J Trop Med Hyg. 2011;85:3–5.PubMedCentralCrossRefPubMed
12.
go back to reference Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:365.PubMedCentralCrossRefPubMed Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:365.PubMedCentralCrossRefPubMed
14.
go back to reference Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J. 2014;13:417.PubMedCentralCrossRefPubMed Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J. 2014;13:417.PubMedCentralCrossRefPubMed
15.
go back to reference Ouedraogo A, Bastiaens G, Tiono A, Guelbeogo W, Kobylinski K, Ouedraogo A, et al. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis. 2015;60:357–65.CrossRefPubMed Ouedraogo A, Bastiaens G, Tiono A, Guelbeogo W, Kobylinski K, Ouedraogo A, et al. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis. 2015;60:357–65.CrossRefPubMed
16.
17.
go back to reference Meyers JI, Gray M, Kuklinski W, Johnson LB, Snow CD, Black WC, et al. Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae. J Exp Biol. 2015;218:1478–86.CrossRefPubMed Meyers JI, Gray M, Kuklinski W, Johnson LB, Snow CD, Black WC, et al. Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae. J Exp Biol. 2015;218:1478–86.CrossRefPubMed
18.
go back to reference Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature. 1994;371:707–11.CrossRefPubMed Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature. 1994;371:707–11.CrossRefPubMed
19.
go back to reference Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP. Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem. 1996;271:20187–91.CrossRefPubMed Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP. Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem. 1996;271:20187–91.CrossRefPubMed
20.
go back to reference Ndiath MO, Mazenot C, Sokhna C, Trape JF. How the malaria vector Anopheles gambiae adapts to the use of insecticide-treated nets by African populations. PLoS One. 2014;9:e97700.PubMedCentralCrossRefPubMed Ndiath MO, Mazenot C, Sokhna C, Trape JF. How the malaria vector Anopheles gambiae adapts to the use of insecticide-treated nets by African populations. PLoS One. 2014;9:e97700.PubMedCentralCrossRefPubMed
21.
go back to reference Lefèvre T, Gouagna LC, Dabiré KR, Elguero E, Fontenille D, Renaud F, et al. Beyond nature and nurture: phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. Am J Trop Med Hyg. 2009;81:1023–9.CrossRefPubMed Lefèvre T, Gouagna LC, Dabiré KR, Elguero E, Fontenille D, Renaud F, et al. Beyond nature and nurture: phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. Am J Trop Med Hyg. 2009;81:1023–9.CrossRefPubMed
22.
go back to reference Geary TG. Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol. 2005;21:1985–7.CrossRef Geary TG. Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol. 2005;21:1985–7.CrossRef
23.
go back to reference Pooda SH, Mouline K, De Meeûs T, Bengaly Z, Solano P. Decrease in survival and fecundity of Glossina palpalis gambiensis vanderplank 1949 (Diptera: Glossinidae) fed on cattle treated with single doses of ivermectin. Parasites. 2013;6:1–6. Pooda SH, Mouline K, De Meeûs T, Bengaly Z, Solano P. Decrease in survival and fecundity of Glossina palpalis gambiensis vanderplank 1949 (Diptera: Glossinidae) fed on cattle treated with single doses of ivermectin. Parasites. 2013;6:1–6.
24.
go back to reference INSD. Recensement general de la population et de l’habitation de 2006 Juillet 2008; 2008. INSD. Recensement general de la population et de l’habitation de 2006 Juillet 2008; 2008.
25.
go back to reference Naz S, Maqbool A, Ahmad M-D, Anjum AA, Zaman S. Efficacy of ivermectin for control of zoophilic malaria vectors in Pakistan. Pak J Zool. 2013;45:1585–91. Naz S, Maqbool A, Ahmad M-D, Anjum AA, Zaman S. Efficacy of ivermectin for control of zoophilic malaria vectors in Pakistan. Pak J Zool. 2013;45:1585–91.
26.
go back to reference Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. 2015;14:351.PubMedCentralCrossRefPubMed Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. 2015;14:351.PubMedCentralCrossRefPubMed
27.
go back to reference Fritz ML, Siegert PY, Walker ED, Bayoh MNI, Vulule JRI. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.l. Ann Trop Med Parasitol. 2009;103:539–47.CrossRefPubMed Fritz ML, Siegert PY, Walker ED, Bayoh MNI, Vulule JRI. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.l. Ann Trop Med Parasitol. 2009;103:539–47.CrossRefPubMed
28.
go back to reference Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.PubMedCentralCrossRefPubMed Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.PubMedCentralCrossRefPubMed
29.
go back to reference Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRefPubMed Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRefPubMed
30.
go back to reference Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, et al. Comparative genomics: insecticide resistance in mosquito vectors. Nature. 2003;423:136–7.CrossRefPubMed Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, et al. Comparative genomics: insecticide resistance in mosquito vectors. Nature. 2003;423:136–7.CrossRefPubMed
31.
go back to reference Namountougou M, Diabate A, Etang J, Bass C, Sawadogo SP, Gnankinie O, et al. First report of the L1014S kdr mutation in wild populations of Anopheles gambiae M and S molecular forms in Burkina Faso (West Africa). Acta Trop. 2013;125:123–7.CrossRefPubMed Namountougou M, Diabate A, Etang J, Bass C, Sawadogo SP, Gnankinie O, et al. First report of the L1014S kdr mutation in wild populations of Anopheles gambiae M and S molecular forms in Burkina Faso (West Africa). Acta Trop. 2013;125:123–7.CrossRefPubMed
32.
go back to reference Hennesy D, Alvinerie M. Pharmacokinetics of macrocyclic lactones: conventional wisdom and news paradigms. In: Vercruysse J, Rew R, editors. Macrocyclic lactones in antiparasitic therapy. New York: CAB; 2002. p. 97–121.CrossRef Hennesy D, Alvinerie M. Pharmacokinetics of macrocyclic lactones: conventional wisdom and news paradigms. In: Vercruysse J, Rew R, editors. Macrocyclic lactones in antiparasitic therapy. New York: CAB; 2002. p. 97–121.CrossRef
33.
go back to reference Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2005;30:11–26.PubMed Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2005;30:11–26.PubMed
34.
go back to reference Mouline K, Mamai W, Agnew P, Tchonfienet M, Brengues C, Dabire R, et al. Physiology and development of the M and S molecular forms of Anopheles gambiae in Burkina Faso (West Africa). Med Vet Entomol. 2012;26:447–54.CrossRefPubMed Mouline K, Mamai W, Agnew P, Tchonfienet M, Brengues C, Dabire R, et al. Physiology and development of the M and S molecular forms of Anopheles gambiae in Burkina Faso (West Africa). Med Vet Entomol. 2012;26:447–54.CrossRefPubMed
35.
go back to reference Sangare I, Michalakis Y, Yameogo B, Dabire R, Morlais I, Cohuet A. Studying fitness cost of Plasmodium falciparum infection in malaria vectors: validation of an appropriate negative control. Malar J. 2013;12:2.PubMedCentralCrossRefPubMed Sangare I, Michalakis Y, Yameogo B, Dabire R, Morlais I, Cohuet A. Studying fitness cost of Plasmodium falciparum infection in malaria vectors: validation of an appropriate negative control. Malar J. 2013;12:2.PubMedCentralCrossRefPubMed
36.
go back to reference Alout H, Ndam TN, Sandeu MM, Djegbe I, Chandre F, Dabire RK, Djogbenou LS, Corbel V, Cohuet A. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS One. 2013;8:e63849.PubMedCentralCrossRefPubMed Alout H, Ndam TN, Sandeu MM, Djegbe I, Chandre F, Dabire RK, Djogbenou LS, Corbel V, Cohuet A. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS One. 2013;8:e63849.PubMedCentralCrossRefPubMed
37.
go back to reference Vantaux A, Dabire KR, Cohuet A, Lefevre T. A heavy legacy: offspring of malaria-infected mosquitoes show reduced disease resistance. Malar J. 2014;13:442.PubMedCentralCrossRefPubMed Vantaux A, Dabire KR, Cohuet A, Lefevre T. A heavy legacy: offspring of malaria-infected mosquitoes show reduced disease resistance. Malar J. 2014;13:442.PubMedCentralCrossRefPubMed
38.
go back to reference Crawley M. The R book, vol. 103. Silwood Park: Imperial College London; 2007.CrossRef Crawley M. The R book, vol. 103. Silwood Park: Imperial College London; 2007.CrossRef
39.
go back to reference Carnevale P, Robert V. Les Anophèles: Biologie. Marseille: Transmission Du Plasmodium et Lutte Antivectorielle. IRD; 2009. Carnevale P, Robert V. Les Anophèles: Biologie. Marseille: Transmission Du Plasmodium et Lutte Antivectorielle. IRD; 2009.
40.
go back to reference Abbott WS. A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc. 1987;3:302–3.PubMed Abbott WS. A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc. 1987;3:302–3.PubMed
41.
go back to reference Derua YA, Kisinza WN, Simonsen PE. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2015;8:130.PubMedCentralCrossRefPubMed Derua YA, Kisinza WN, Simonsen PE. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2015;8:130.PubMedCentralCrossRefPubMed
42.
go back to reference Lanusse C, Lifschitz A, Virkel G, Alvarez L, Sanchez S, Sutra JF, et al. Comparative plasma disposition kinetics of ivermectin, moxidectin and doramectin in cattle. J Vet Pharmacol Ther. 1997;20:91–9.CrossRefPubMed Lanusse C, Lifschitz A, Virkel G, Alvarez L, Sanchez S, Sutra JF, et al. Comparative plasma disposition kinetics of ivermectin, moxidectin and doramectin in cattle. J Vet Pharmacol Ther. 1997;20:91–9.CrossRefPubMed
43.
go back to reference Alvinerie M, Escudero E, Sutra JF, Eeckhoutte C, Galtier P. The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep. Vet Res. 1998;29:113–8.PubMed Alvinerie M, Escudero E, Sutra JF, Eeckhoutte C, Galtier P. The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep. Vet Res. 1998;29:113–8.PubMed
44.
go back to reference Tesh RB, Guzman H. Mortality and infertility in adult mosquitoes after the ingestion of blood containing ivermectin. Am J Trop Med Hyg. 1990;43:229–33.PubMed Tesh RB, Guzman H. Mortality and infertility in adult mosquitoes after the ingestion of blood containing ivermectin. Am J Trop Med Hyg. 1990;43:229–33.PubMed
45.
go back to reference Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G. DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hyg. 2006;75:231–7.PubMed Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G. DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hyg. 2006;75:231–7.PubMed
46.
go back to reference Deus KM, Saavedra-Rodriguez K, Butters MP, Black WC, Foy BD. The effect of ivermectin in seven stains of Aedes aegypti (Diptera: Culicidae) including a genetically diverse laboratory strain and three permethrin resistant strains. J Med Entomol. 2012;49:356–63.PubMedCentralCrossRefPubMed Deus KM, Saavedra-Rodriguez K, Butters MP, Black WC, Foy BD. The effect of ivermectin in seven stains of Aedes aegypti (Diptera: Culicidae) including a genetically diverse laboratory strain and three permethrin resistant strains. J Med Entomol. 2012;49:356–63.PubMedCentralCrossRefPubMed
47.
go back to reference Namountougou M, Simard F, Baldet T, Diabate A, Ouedraogo JB, Martin T, et al. Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS One. 2012;9:e48412.CrossRef Namountougou M, Simard F, Baldet T, Diabate A, Ouedraogo JB, Martin T, et al. Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS One. 2012;9:e48412.CrossRef
48.
go back to reference Jones CM, Toe HK, Sanou A, Namountougou M, Hughes A, Diabate A, et al. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso. PLoS One. 2012;7:e45995.PubMedCentralCrossRefPubMed Jones CM, Toe HK, Sanou A, Namountougou M, Hughes A, Diabate A, et al. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso. PLoS One. 2012;7:e45995.PubMedCentralCrossRefPubMed
49.
go back to reference Geurden T, Chartier C, Fanke J, di Regalbono AF, Traversa D, von Samson-Himmelstjerna G, et al. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int J Parasitol Drugs Drug Resist. 2015;5:163–71.PubMedCentralCrossRefPubMed Geurden T, Chartier C, Fanke J, di Regalbono AF, Traversa D, von Samson-Himmelstjerna G, et al. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int J Parasitol Drugs Drug Resist. 2015;5:163–71.PubMedCentralCrossRefPubMed
50.
go back to reference Seaman J, Alout H, Meyers JI, Stenglein MD, Dabiré RK, Lozano-Fuentes S, et al. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genom. 2015;16:797.CrossRef Seaman J, Alout H, Meyers JI, Stenglein MD, Dabiré RK, Lozano-Fuentes S, et al. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genom. 2015;16:797.CrossRef
51.
go back to reference Lumaret J-P, Errouissi F. Use of anthelmintics in herbivores and evaluation of risks for the non target fauna of pastures. Vet Res. 2002;33:547–62.CrossRefPubMed Lumaret J-P, Errouissi F. Use of anthelmintics in herbivores and evaluation of risks for the non target fauna of pastures. Vet Res. 2002;33:547–62.CrossRefPubMed
52.
go back to reference Verdú JR, Cortez V, Ortiz AJ, González-Rodríguez E, Martinez-Pinna J, Lumaret J-P, et al. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci Rep. 2015;5:13912.PubMedCentralCrossRefPubMed Verdú JR, Cortez V, Ortiz AJ, González-Rodríguez E, Martinez-Pinna J, Lumaret J-P, et al. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci Rep. 2015;5:13912.PubMedCentralCrossRefPubMed
53.
go back to reference Puniamoorthy N, Schäfer MA, Römbke J, Meier R, Blanckenhorn WU. Ivermectin sensitivity is an ancient trait affecting all ecdysozoa but shows phylogenetic clustering among sepsid flies. Evol Appl. 2014;7:548–54.PubMedCentralCrossRefPubMed Puniamoorthy N, Schäfer MA, Römbke J, Meier R, Blanckenhorn WU. Ivermectin sensitivity is an ancient trait affecting all ecdysozoa but shows phylogenetic clustering among sepsid flies. Evol Appl. 2014;7:548–54.PubMedCentralCrossRefPubMed
54.
go back to reference Slater HC, Walker PG, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210:1972–80.CrossRefPubMed Slater HC, Walker PG, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210:1972–80.CrossRefPubMed
55.
go back to reference Chaccour C, Barrio ÁI, Royo AGG, Urbistondo DM, Slater H, Hammann F, Del Pozo JL. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar J. 2015;14:102.PubMedCentralCrossRefPubMed Chaccour C, Barrio ÁI, Royo AGG, Urbistondo DM, Slater H, Hammann F, Del Pozo JL. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar J. 2015;14:102.PubMedCentralCrossRefPubMed
Metadata
Title
Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria
Authors
Hermann S. Pooda
Jean-Baptiste Rayaisse
Domonbabele François de Sale Hien
Thierry Lefèvre
Serge R. Yerbanga
Zakaria Bengaly
Roch K. Dabiré
Adrien M. G. Belem
Issa Sidibé
Philippe Solano
Karine Mouline
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-1001-z

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue