Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Glioma | Review

Why are olfactory ensheathing cell tumors so rare?

Authors: Mariyam Murtaza, Anu Chacko, Ali Delbaz, Ronak Reshamwala, Andrew Rayfield, Brent McMonagle, James A. St John, Jenny A. K. Ekberg

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

The glial cells of the primary olfactory nervous system, olfactory ensheathing cells (OECs), are unusual in that they rarely form tumors. Only 11 cases, all of which were benign, have been reported to date. In fact, the existence of OEC tumors has been debated as the tumors closely resemble schwannomas (Schwann cell tumors), and there is no definite method for distinguishing the two tumor types. OEC transplantation is a promising therapeutic approach for nervous system injuries, and the fact that OECs are not prone to tumorigenesis is therefore vital. However, why OECs are so resistant to neoplastic transformation remains unknown. The primary olfactory nervous system is a highly dynamic region which continuously undergoes regeneration and neurogenesis throughout life. OECs have key roles in this process, providing structural and neurotrophic support as well as phagocytosing the axonal debris resulting from turnover of neurons. The olfactory mucosa and underlying tissue is also frequently exposed to infectious agents, and OECs have key innate immune roles preventing microbes from invading the central nervous system. It is possible that the unique biological functions of OECs, as well as the dynamic nature of the primary olfactory nervous system, relate to the low incidence of OEC tumors. Here, we summarize the known case reports of OEC tumors, discuss the difficulties of correctly diagnosing them, and examine the possible reasons for their rare incidence. Understanding why OECs rarely form tumors may open avenues for new strategies to combat tumorigenesis in other regions of the nervous system.
Literature
1.
go back to reference Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14(Suppl 5):v1–49.PubMedPubMedCentralCrossRef Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14(Suppl 5):v1–49.PubMedPubMedCentralCrossRef
2.
go back to reference Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.PubMedCrossRef Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.PubMedCrossRef
3.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef
4.
go back to reference Hanani M. Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev. 2005;48(3):457–76.PubMedCrossRef Hanani M. Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev. 2005;48(3):457–76.PubMedCrossRef
5.
go back to reference Yasuda M, Higuchi O, Takano S, Matsumura A. Olfactory ensheathing cell tumor: a case report. J Neurooncol. 2006;76(2):111–3.PubMedCrossRef Yasuda M, Higuchi O, Takano S, Matsumura A. Olfactory ensheathing cell tumor: a case report. J Neurooncol. 2006;76(2):111–3.PubMedCrossRef
6.
go back to reference Barton MJ, St John JA, Clarke M, Wright A, Ekberg J. The glia response after peripheral nerve injury: a comparison between Schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies. Int J Mol Sci. 2017;18(2):E287.PubMedCrossRef Barton MJ, St John JA, Clarke M, Wright A, Ekberg J. The glia response after peripheral nerve injury: a comparison between Schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies. Int J Mol Sci. 2017;18(2):E287.PubMedCrossRef
7.
8.
go back to reference Ekberg JA, Amaya D, Mackay-Sim A, St John JA. The migration of olfactory ensheathing cells during development and regeneration. Neurosignals. 2012;20(3):147–58.PubMedCrossRef Ekberg JA, Amaya D, Mackay-Sim A, St John JA. The migration of olfactory ensheathing cells during development and regeneration. Neurosignals. 2012;20(3):147–58.PubMedCrossRef
9.
go back to reference Ekberg JA, St John JA. Crucial roles for olfactory ensheathing cells and olfactory mucosal cells in the repair of damaged neural tracts. Anat Rec (Hoboken). 2014;297(1):121–8.CrossRef Ekberg JA, St John JA. Crucial roles for olfactory ensheathing cells and olfactory mucosal cells in the repair of damaged neural tracts. Anat Rec (Hoboken). 2014;297(1):121–8.CrossRef
10.
go back to reference Ekberg JA, St John JA. Olfactory ensheathing cells for spinal cord repair: crucial differences between subpopulations of the glia. Neural Regen Res. 2015;10(9):1395–6.PubMedPubMedCentralCrossRef Ekberg JA, St John JA. Olfactory ensheathing cells for spinal cord repair: crucial differences between subpopulations of the glia. Neural Regen Res. 2015;10(9):1395–6.PubMedPubMedCentralCrossRef
11.
go back to reference Chuah MI, West AK. Cellular and molecular biology of ensheathing cells. Microsc Res Tech. 2002;58(3):216–27.PubMedCrossRef Chuah MI, West AK. Cellular and molecular biology of ensheathing cells. Microsc Res Tech. 2002;58(3):216–27.PubMedCrossRef
12.
go back to reference Graziadei PP, Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol. 1979;8(1):1–18.PubMedCrossRef Graziadei PP, Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol. 1979;8(1):1–18.PubMedCrossRef
13.
go back to reference Graziadei PP, Monti Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. J Neurocytol. 1980;9(2):145–62.PubMedCrossRef Graziadei PP, Monti Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. J Neurocytol. 1980;9(2):145–62.PubMedCrossRef
14.
go back to reference Graziadei PP, Monti Graziadei GA. Neurogenesis and plasticity of the olfactory sensory neurons. Ann N Y Acad Sci. 1985;457:127–42.PubMedCrossRef Graziadei PP, Monti Graziadei GA. Neurogenesis and plasticity of the olfactory sensory neurons. Ann N Y Acad Sci. 1985;457:127–42.PubMedCrossRef
15.
go back to reference Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175–87.PubMedCrossRef Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175–87.PubMedCrossRef
16.
go back to reference Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, et al. Visualizing an olfactory sensory map. Cell. 1996;87(4):675–86.CrossRefPubMed Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, et al. Visualizing an olfactory sensory map. Cell. 1996;87(4):675–86.CrossRefPubMed
17.
go back to reference Doucette R. Development of the nerve fiber layer in the olfactory bulb of mouse embryos. J Comp Neurol. 1989;285(4):514–27.PubMedCrossRef Doucette R. Development of the nerve fiber layer in the olfactory bulb of mouse embryos. J Comp Neurol. 1989;285(4):514–27.PubMedCrossRef
18.
go back to reference Doucette R. Glial influences on axonal growth in the primary olfactory system. Glia. 1990;3(6):433–49.PubMedCrossRef Doucette R. Glial influences on axonal growth in the primary olfactory system. Glia. 1990;3(6):433–49.PubMedCrossRef
19.
go back to reference Barnett SC, Riddell JS. Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat. 2004;204(1):57–67.PubMedPubMedCentralCrossRef Barnett SC, Riddell JS. Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat. 2004;204(1):57–67.PubMedPubMedCentralCrossRef
20.
go back to reference Bartolomei JC, Greer CA. Olfactory ensheathing cells: bridging the gap in spinal cord injury. Neurosurgery. 2000;47(5):1057–69.PubMedCrossRef Bartolomei JC, Greer CA. Olfactory ensheathing cells: bridging the gap in spinal cord injury. Neurosurgery. 2000;47(5):1057–69.PubMedCrossRef
21.
go back to reference Ramon-Cueto A, Avila J. Olfactory ensheathing glia: properties and function. Brain Res Bull. 1998;46(3):175–87.PubMedCrossRef Ramon-Cueto A, Avila J. Olfactory ensheathing glia: properties and function. Brain Res Bull. 1998;46(3):175–87.PubMedCrossRef
22.
go back to reference Roet KC, Verhaagen J. Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol. 2014;261:594–609.PubMedCrossRef Roet KC, Verhaagen J. Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol. 2014;261:594–609.PubMedCrossRef
23.
go back to reference Leung JY, Chapman JA, Harris JA, Hale D, Chung RS, West AK, et al. Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci. 2008;65(17):2732–9.PubMedCrossRef Leung JY, Chapman JA, Harris JA, Hale D, Chung RS, West AK, et al. Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci. 2008;65(17):2732–9.PubMedCrossRef
24.
go back to reference Wewetzer K, Kern N, Ebel C, Radtke C, Brandes G. Phagocytosis of O4(+) axonal fragments in vitro by p75(-) neonatal rat olfactory ensheathing cells. Glia. 2005;49(4):577–87.PubMedCrossRef Wewetzer K, Kern N, Ebel C, Radtke C, Brandes G. Phagocytosis of O4(+) axonal fragments in vitro by p75(-) neonatal rat olfactory ensheathing cells. Glia. 2005;49(4):577–87.PubMedCrossRef
25.
go back to reference He BR, Xie ST, Wu MM, Hao DJ, Yang H. Phagocytic removal of neuronal debris by olfactory ensheathing cells enhances neuronal survival and neurite outgrowth via p38MAPK activity. Mol Neurobiol. 2014;49(3):1501–12.PubMedCrossRef He BR, Xie ST, Wu MM, Hao DJ, Yang H. Phagocytic removal of neuronal debris by olfactory ensheathing cells enhances neuronal survival and neurite outgrowth via p38MAPK activity. Mol Neurobiol. 2014;49(3):1501–12.PubMedCrossRef
26.
go back to reference Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, et al. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia. 2013;61(4):490–503.PubMedCrossRef Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, et al. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia. 2013;61(4):490–503.PubMedCrossRef
27.
go back to reference Nazareth L, Lineburg KE, Chuah MI, Tello Velasquez J, Chehrehasa F, St John JA, et al. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J Comp Neurol. 2015;523(3):479–94.PubMedCrossRef Nazareth L, Lineburg KE, Chuah MI, Tello Velasquez J, Chehrehasa F, St John JA, et al. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J Comp Neurol. 2015;523(3):479–94.PubMedCrossRef
28.
go back to reference Harris JA, West AK, Chuah MI. Olfactory ensheathing cells: nitric oxide production and innate immunity. Glia. 2009;57(16):1848–57.PubMedCrossRef Harris JA, West AK, Chuah MI. Olfactory ensheathing cells: nitric oxide production and innate immunity. Glia. 2009;57(16):1848–57.PubMedCrossRef
29.
go back to reference Herbert RP, Harris J, Chong KP, Chapman J, West AK, Chuah MI. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway. J Neuroinflammation. 2012;9:109.PubMedPubMedCentralCrossRef Herbert RP, Harris J, Chong KP, Chapman J, West AK, Chuah MI. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway. J Neuroinflammation. 2012;9:109.PubMedPubMedCentralCrossRef
30.
go back to reference Vincent AJ, Choi-Lundberg DL, Harris JA, West AK, Chuah MI. Bacteria and PAMPs activate nuclear factor kappaB and Gro production in a subset of olfactory ensheathing cells and astrocytes but not in Schwann cells. Glia. 2007;55(9):905–16.PubMedCrossRef Vincent AJ, Choi-Lundberg DL, Harris JA, West AK, Chuah MI. Bacteria and PAMPs activate nuclear factor kappaB and Gro production in a subset of olfactory ensheathing cells and astrocytes but not in Schwann cells. Glia. 2007;55(9):905–16.PubMedCrossRef
31.
go back to reference Panni P, Ferguson IA, Beacham I, Mackay-Sim A, Ekberg JAK, St John JA. Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells. Neurosci Lett. 2013;539:65–70.PubMedCrossRef Panni P, Ferguson IA, Beacham I, Mackay-Sim A, Ekberg JAK, St John JA. Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells. Neurosci Lett. 2013;539:65–70.PubMedCrossRef
32.
go back to reference Tabakow P, Jarmundowicz W, Czapiga B, Fortuna W, Miedzybrodzki R, Czyz M, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013;22(9):1591–612.PubMedCrossRef Tabakow P, Jarmundowicz W, Czapiga B, Fortuna W, Miedzybrodzki R, Czyz M, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013;22(9):1591–612.PubMedCrossRef
33.
go back to reference Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li DQ, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 2014;23(12):1631–55.PubMedCrossRef Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li DQ, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 2014;23(12):1631–55.PubMedCrossRef
34.
go back to reference Munoz-Quiles C, Santos-Benito FF, Liamusi MB, Ramon-Cueto A. Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy. J Neuropathol Exp Neurol. 2009;68(12):1294–308.PubMedCrossRef Munoz-Quiles C, Santos-Benito FF, Liamusi MB, Ramon-Cueto A. Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy. J Neuropathol Exp Neurol. 2009;68(12):1294–308.PubMedCrossRef
35.
go back to reference Granger N, Blamires H, Franklin RJM, Jeffery ND. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain. 2012;135:3227–37.PubMedPubMedCentralCrossRef Granger N, Blamires H, Franklin RJM, Jeffery ND. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain. 2012;135:3227–37.PubMedPubMedCentralCrossRef
36.
go back to reference Boruch AV, Conners JJ, Pipitone M, Deadwyler G, Storer PD, Devries GH, et al. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia. 2001;33(3):225–9.PubMedCrossRef Boruch AV, Conners JJ, Pipitone M, Deadwyler G, Storer PD, Devries GH, et al. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia. 2001;33(3):225–9.PubMedCrossRef
37.
go back to reference Cloutier F, Kalincik T, Lauschke J, Tuxworth G, Cavanagh B, Meedeniya A, et al. Olfactory ensheathing cells but not fibroblasts reduce the duration of autonomic dysreflexia in spinal cord injured rats. Auton Neurosci. 2016;201:17–23.CrossRefPubMed Cloutier F, Kalincik T, Lauschke J, Tuxworth G, Cavanagh B, Meedeniya A, et al. Olfactory ensheathing cells but not fibroblasts reduce the duration of autonomic dysreflexia in spinal cord injured rats. Auton Neurosci. 2016;201:17–23.CrossRefPubMed
38.
go back to reference Deng C, Gorrie C, Hayward I, Elston B, Venn M, Mackay-Sim A, et al. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J Neurosci Res. 2006;83(7):1201–12.PubMedCrossRef Deng C, Gorrie C, Hayward I, Elston B, Venn M, Mackay-Sim A, et al. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J Neurosci Res. 2006;83(7):1201–12.PubMedCrossRef
39.
go back to reference Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005;128(Pt 12):2951–60.CrossRefPubMed Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005;128(Pt 12):2951–60.CrossRefPubMed
40.
go back to reference Gorrie CA, Hayward I, Cameron N, Kailainathan G, Nandapalan N, Sutharsan R, et al. Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res. 2010;1337:8–20.PubMedCrossRef Gorrie CA, Hayward I, Cameron N, Kailainathan G, Nandapalan N, Sutharsan R, et al. Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res. 2010;1337:8–20.PubMedCrossRef
41.
go back to reference Kalincik T, Choi EA, Feron F, Bianco J, Sutharsan R, Hayward I, et al. Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury. Auton Neurosci. 2010;154(1–2):20–9.PubMedCrossRef Kalincik T, Choi EA, Feron F, Bianco J, Sutharsan R, Hayward I, et al. Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury. Auton Neurosci. 2010;154(1–2):20–9.PubMedCrossRef
42.
go back to reference Lu J, Feron F, Mackay-Sim A, Waite PM. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain. 2002;125(Pt 1):14–21.PubMedCrossRef Lu J, Feron F, Mackay-Sim A, Waite PM. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain. 2002;125(Pt 1):14–21.PubMedCrossRef
43.
go back to reference Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(Pt 9):2376–86.PubMedPubMedCentralCrossRef Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(Pt 9):2376–86.PubMedPubMedCentralCrossRef
44.
go back to reference Hsieh J, Liu JW, Harn HJ, Hsueh KW, Rajamani K, Deng YC, et al. Human olfactory ensheathing cell transplantation improves motor function in a mouse model of type 3 spinocerebellar ataxia. Cell Transplant. 2017;26(10):1611–21.PubMedPubMedCentralCrossRef Hsieh J, Liu JW, Harn HJ, Hsueh KW, Rajamani K, Deng YC, et al. Human olfactory ensheathing cell transplantation improves motor function in a mouse model of type 3 spinocerebellar ataxia. Cell Transplant. 2017;26(10):1611–21.PubMedPubMedCentralCrossRef
45.
go back to reference Li Y, Chen L, Zhao Y, Bao J, Xiao J, Liu J, et al. Intracranial transplant of olfactory ensheathing cells can protect both upper and lower motor neurons in amyotrophic lateral sclerosis. Cell Transplant. 2013;22(Suppl 1):S51–65.PubMedCrossRef Li Y, Chen L, Zhao Y, Bao J, Xiao J, Liu J, et al. Intracranial transplant of olfactory ensheathing cells can protect both upper and lower motor neurons in amyotrophic lateral sclerosis. Cell Transplant. 2013;22(Suppl 1):S51–65.PubMedCrossRef
46.
go back to reference Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, et al. Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest. 2008;118(7):2482–95.PubMedPubMedCentralCrossRef Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, et al. Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest. 2008;118(7):2482–95.PubMedPubMedCentralCrossRef
47.
go back to reference Cheng SY, Ruan HZ, Wu XG. Olfactory ensheathing cells enhance functional recovery of injured sciatic nerve. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003;17(1):18–21.PubMed Cheng SY, Ruan HZ, Wu XG. Olfactory ensheathing cells enhance functional recovery of injured sciatic nerve. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003;17(1):18–21.PubMed
48.
go back to reference Choi D, Raisman G. Disorganization of the facial nucleus after nerve lesioning and regeneration in the rat: effects of transplanting candidate reparative cells to the site of injury. Neurosurgery. 2005;56(5):1093–100 (Discussion-100).PubMed Choi D, Raisman G. Disorganization of the facial nucleus after nerve lesioning and regeneration in the rat: effects of transplanting candidate reparative cells to the site of injury. Neurosurgery. 2005;56(5):1093–100 (Discussion-100).PubMed
49.
go back to reference Paviot A, Guerout N, Bon-Mardion N, Duclos C, Jean L, Boyer O, et al. Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells. Neurobiol Dis. 2011;41(3):688–94.PubMedCrossRef Paviot A, Guerout N, Bon-Mardion N, Duclos C, Jean L, Boyer O, et al. Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells. Neurobiol Dis. 2011;41(3):688–94.PubMedCrossRef
50.
go back to reference Radtke C, Aizer AA, Agulian SK, Lankford KL, Vogt PM, Kocsis JD. Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res. 2009;1254:10–7.PubMedCrossRef Radtke C, Aizer AA, Agulian SK, Lankford KL, Vogt PM, Kocsis JD. Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res. 2009;1254:10–7.PubMedCrossRef
51.
go back to reference Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, et al. Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci USA. 2010;107(49):21040–5.PubMedCrossRefPubMedCentral Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, et al. Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci USA. 2010;107(49):21040–5.PubMedCrossRefPubMedCentral
52.
go back to reference Kaplan S, Odaci E, Unal B, Sahin B, Fornaro M. Development of the peripheral nerve. Int Rev Neurobiol. 2009;87:9–26.PubMedCrossRef Kaplan S, Odaci E, Unal B, Sahin B, Fornaro M. Development of the peripheral nerve. Int Rev Neurobiol. 2009;87:9–26.PubMedCrossRef
53.
go back to reference Field P, Li Y, Raisman G. Ensheathment of the olfactory nerves in the adult rat. J Neurocytol. 2003;32(3):317–24.PubMedCrossRef Field P, Li Y, Raisman G. Ensheathment of the olfactory nerves in the adult rat. J Neurocytol. 2003;32(3):317–24.PubMedCrossRef
54.
go back to reference Sulaiman W, Gordon T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J. 2013;13(1):100–8.PubMedPubMedCentral Sulaiman W, Gordon T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J. 2013;13(1):100–8.PubMedPubMedCentral
55.
go back to reference Al-Ghanem R, Ramos-Pleguezuelos FM, Perez-Darosa SI, Galicia-Bulnes JM, Cabrerizo-Carvajal F, El-Rubaidi OA. Olfactory ensheathing cell tumour: case report and literature review. Neurocirugia (Astur). 2013;24(3):130–4.CrossRef Al-Ghanem R, Ramos-Pleguezuelos FM, Perez-Darosa SI, Galicia-Bulnes JM, Cabrerizo-Carvajal F, El-Rubaidi OA. Olfactory ensheathing cell tumour: case report and literature review. Neurocirugia (Astur). 2013;24(3):130–4.CrossRef
56.
go back to reference Darie I, Riffaud L, Saikali S, Brassier G, Hamlat A. Olfactory ensheathing cell tumour: case report and literature review. J Neurooncol. 2010;100(2):285–9.PubMedCrossRef Darie I, Riffaud L, Saikali S, Brassier G, Hamlat A. Olfactory ensheathing cell tumour: case report and literature review. J Neurooncol. 2010;100(2):285–9.PubMedCrossRef
57.
go back to reference Ippili K, Ratnam BG, Gowrishankar S, Ranjan A, Lath R. Olfactory ensheathing cell tumor. Neurol India. 2009;57(1):76–8.PubMedCrossRef Ippili K, Ratnam BG, Gowrishankar S, Ranjan A, Lath R. Olfactory ensheathing cell tumor. Neurol India. 2009;57(1):76–8.PubMedCrossRef
58.
go back to reference Lin SC, Chen MH, Lin CF, Ho DM. Olfactory ensheathing cell tumor with neurofibroma-like features: a case report and review of the literature. J Neurooncol. 2010;97(1):117–22.PubMedCrossRef Lin SC, Chen MH, Lin CF, Ho DM. Olfactory ensheathing cell tumor with neurofibroma-like features: a case report and review of the literature. J Neurooncol. 2010;97(1):117–22.PubMedCrossRef
59.
go back to reference Liu Y, Wei M, Yang K, Tan Z, Sun X, Li X, et al. Globose, cystic olfactory ensheathing cell tumor: a case report and literature review. Oncol Lett. 2016;12(5):3981–6.PubMedPubMedCentralCrossRef Liu Y, Wei M, Yang K, Tan Z, Sun X, Li X, et al. Globose, cystic olfactory ensheathing cell tumor: a case report and literature review. Oncol Lett. 2016;12(5):3981–6.PubMedPubMedCentralCrossRef
60.
go back to reference Mu Q, Gao H, Liu P, Hu X, Zheng XU, Li P, et al. Olfactory ensheathing cell tumor: a case report and review of the literature. Oncol Lett. 2015;9(5):2078–84.PubMedPubMedCentralCrossRef Mu Q, Gao H, Liu P, Hu X, Zheng XU, Li P, et al. Olfactory ensheathing cell tumor: a case report and review of the literature. Oncol Lett. 2015;9(5):2078–84.PubMedPubMedCentralCrossRef
61.
go back to reference Qi X, Wan Y, Yan Q, Wang Y, Yang S. Cystic olfactory ensheathing cell tumor: a case report. Acta Neurol Belg. 2015;115(2):191–3.PubMedCrossRef Qi X, Wan Y, Yan Q, Wang Y, Yang S. Cystic olfactory ensheathing cell tumor: a case report. Acta Neurol Belg. 2015;115(2):191–3.PubMedCrossRef
62.
go back to reference Schild MH, Harrison WT, Cummings TJ. Olfactory ensheathing cell tumor: a case presentation. Clin Neuropathol. 2017;36(6):291–2.PubMedCrossRef Schild MH, Harrison WT, Cummings TJ. Olfactory ensheathing cell tumor: a case presentation. Clin Neuropathol. 2017;36(6):291–2.PubMedCrossRef
63.
64.
65.
go back to reference Wippold FJ 2nd, Lubner M, Perrin RJ, Lammle M, Perry A. Neuropathology for the neuroradiologist: antoni A and Antoni B tissue patterns. AJNR Am J Neuroradiol. 2007;28(9):1633–8.PubMedCrossRefPubMedCentral Wippold FJ 2nd, Lubner M, Perrin RJ, Lammle M, Perry A. Neuropathology for the neuroradiologist: antoni A and Antoni B tissue patterns. AJNR Am J Neuroradiol. 2007;28(9):1633–8.PubMedCrossRefPubMedCentral
66.
go back to reference Joshi R. Learning from eponyms: Jose Verocay and Verocay bodies, Antoni A and B areas, Nils Antoni and schwannomas. Indian Dermatol Online J. 2012;3(3):215–9.PubMedPubMedCentralCrossRef Joshi R. Learning from eponyms: Jose Verocay and Verocay bodies, Antoni A and B areas, Nils Antoni and schwannomas. Indian Dermatol Online J. 2012;3(3):215–9.PubMedPubMedCentralCrossRef
68.
go back to reference Hanemann CO, Evans DG. News on the genetics, epidemiology, medical care and translational research of Schwannomas. J Neurol. 2006;253(12):1533–41.PubMedCrossRef Hanemann CO, Evans DG. News on the genetics, epidemiology, medical care and translational research of Schwannomas. J Neurol. 2006;253(12):1533–41.PubMedCrossRef
69.
go back to reference Auer RN, Budny J, Drake CG, Ball MJ. Frontal lobe perivascular schwannoma. Case report. J Neurosurg. 1982;56(1):154–7.PubMedCrossRef Auer RN, Budny J, Drake CG, Ball MJ. Frontal lobe perivascular schwannoma. Case report. J Neurosurg. 1982;56(1):154–7.PubMedCrossRef
70.
71.
go back to reference Dharia A, Karmody CS, Rebeiz EE. Schwannoma of the nasal cavity. Ear Nose Throat J. 2007;86(4):230–43.PubMedCrossRef Dharia A, Karmody CS, Rebeiz EE. Schwannoma of the nasal cavity. Ear Nose Throat J. 2007;86(4):230–43.PubMedCrossRef
72.
go back to reference Gupta R, Khurana N, Singh DK, Singh S. Schwannoma of nasal cavity with intracranial extension: a rare but interesting phenomenon in a benign neoplasm. Indian J Pathol Microbiol. 2008;51(3):447–8.PubMedCrossRef Gupta R, Khurana N, Singh DK, Singh S. Schwannoma of nasal cavity with intracranial extension: a rare but interesting phenomenon in a benign neoplasm. Indian J Pathol Microbiol. 2008;51(3):447–8.PubMedCrossRef
73.
go back to reference Mannan AA, Singh MK, Bahadur S, Hatimota P, Sharma MC. Solitary malignant schwannoma of the nasal cavity and paranasal sinuses: report of two rare cases. Ear Nose Throat J. 2003;82(8):634–40.PubMedCrossRef Mannan AA, Singh MK, Bahadur S, Hatimota P, Sharma MC. Solitary malignant schwannoma of the nasal cavity and paranasal sinuses: report of two rare cases. Ear Nose Throat J. 2003;82(8):634–40.PubMedCrossRef
74.
go back to reference Wong E, Kong J, Oh L, Cox D, Forer M. Giant primary schwannoma of the left nasal cavity and ethmoid sinus. Case Rep Otolaryngol. 2016;2016:1706915.PubMedPubMedCentral Wong E, Kong J, Oh L, Cox D, Forer M. Giant primary schwannoma of the left nasal cavity and ethmoid sinus. Case Rep Otolaryngol. 2016;2016:1706915.PubMedPubMedCentral
75.
go back to reference Eichberg DG, Menaker SA, Buttrick SS, Gultekin SH, Komotar RJ. Nasoethmoid Schwannoma with Intracranial Extension: a case report and comprehensive review of the literature. Cureus. 2018;10(8):e3182.PubMedPubMedCentral Eichberg DG, Menaker SA, Buttrick SS, Gultekin SH, Komotar RJ. Nasoethmoid Schwannoma with Intracranial Extension: a case report and comprehensive review of the literature. Cureus. 2018;10(8):e3182.PubMedPubMedCentral
76.
go back to reference Manto A, Manzo G, De Gennaro A, Martino V, Buono V, Serino A. An enigmatic clinical entity: a new case of olfactory schwannoma. Neuroradiol J. 2016;29(3):174–8.PubMedPubMedCentralCrossRef Manto A, Manzo G, De Gennaro A, Martino V, Buono V, Serino A. An enigmatic clinical entity: a new case of olfactory schwannoma. Neuroradiol J. 2016;29(3):174–8.PubMedPubMedCentralCrossRef
77.
go back to reference Sauvaget F, Francois P, Ben Ismail M, Thomas C, Velut S. Anterior fossa schwannoma mimicking an olfactory groove meningioma: case report and literature review. Neurochirurgie. 2013;59(2):75–80.PubMedCrossRef Sauvaget F, Francois P, Ben Ismail M, Thomas C, Velut S. Anterior fossa schwannoma mimicking an olfactory groove meningioma: case report and literature review. Neurochirurgie. 2013;59(2):75–80.PubMedCrossRef
78.
go back to reference Figueiredo EG, Soga Y, Amorim RL, Oliveira AM, Teixeira MJ. The puzzling olfactory groove schwannoma: a systematic review. Skull Base. 2011;21(1):31–6.PubMedPubMedCentralCrossRef Figueiredo EG, Soga Y, Amorim RL, Oliveira AM, Teixeira MJ. The puzzling olfactory groove schwannoma: a systematic review. Skull Base. 2011;21(1):31–6.PubMedPubMedCentralCrossRef
79.
go back to reference Viale EPA, Turtas S. Olfactory groove neurinomas. J Neurosurg Sci. 1973;17:193–6. Viale EPA, Turtas S. Olfactory groove neurinomas. J Neurosurg Sci. 1973;17:193–6.
80.
81.
go back to reference Ghobadifar MA. Schwannomas from olfactory nerve: a rare type. Indian J Surg Oncol. 2016;7(3):363–4.PubMedCrossRef Ghobadifar MA. Schwannomas from olfactory nerve: a rare type. Indian J Surg Oncol. 2016;7(3):363–4.PubMedCrossRef
82.
go back to reference Fuller GN, Burger PC. Nervus terminalis (cranial nerve zero) in the adult human. Clin Neuropathol. 1990;9(6):279–83.PubMed Fuller GN, Burger PC. Nervus terminalis (cranial nerve zero) in the adult human. Clin Neuropathol. 1990;9(6):279–83.PubMed
83.
go back to reference Sonne J, Lopez-Ojeda W. Neuroanatomy, cranial nerve 0 (terminal nerve). Treasure Island: StatPearls; 2018. Sonne J, Lopez-Ojeda W. Neuroanatomy, cranial nerve 0 (terminal nerve). Treasure Island: StatPearls; 2018.
84.
go back to reference Nagao S, Aoki T, Kondo S, Gi H, Matsunaga M, Fujita Y. Subfrontal schwannoma: a case report. No Shinkei Geka. 1991;19(1):47–51.PubMed Nagao S, Aoki T, Kondo S, Gi H, Matsunaga M, Fujita Y. Subfrontal schwannoma: a case report. No Shinkei Geka. 1991;19(1):47–51.PubMed
85.
go back to reference Redekop G, Elisevich K, Gilbert J. Fourth ventricular schwannoma. Case report. J Neurosurg. 1990;73(5):777–81.PubMedCrossRef Redekop G, Elisevich K, Gilbert J. Fourth ventricular schwannoma. Case report. J Neurosurg. 1990;73(5):777–81.PubMedCrossRef
86.
go back to reference Levi AD, Guenard V, Aebischer P, Bunge RP. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci. 1994;14(3 Pt 1):1309–19.PubMedCrossRefPubMedCentral Levi AD, Guenard V, Aebischer P, Bunge RP. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci. 1994;14(3 Pt 1):1309–19.PubMedCrossRefPubMedCentral
87.
go back to reference Martini R, Bollensen E, Schachner M. Immunocytological localization of the major peripheral nervous system glycoprotein P0 and the L2/HNK-1 and L3 carbohydrate structures in developing and adult mouse sciatic nerve. Dev Biol. 1988;129(2):330–8.PubMedCrossRef Martini R, Bollensen E, Schachner M. Immunocytological localization of the major peripheral nervous system glycoprotein P0 and the L2/HNK-1 and L3 carbohydrate structures in developing and adult mouse sciatic nerve. Dev Biol. 1988;129(2):330–8.PubMedCrossRef
88.
go back to reference Bianco JI, Perry C, Harkin DG, Mackay-Sim A, Feron F. Neurotrophin 3 promotes purification and proliferation of olfactory ensheathing cells from human nose. Glia. 2004;45(2):111–23.PubMedCrossRef Bianco JI, Perry C, Harkin DG, Mackay-Sim A, Feron F. Neurotrophin 3 promotes purification and proliferation of olfactory ensheathing cells from human nose. Glia. 2004;45(2):111–23.PubMedCrossRef
89.
go back to reference Johnson MD, Glick AD, Davis BW. Immunohistochemical evaluation of Leu-7, myelin basic-protein, S100-protein, glial-fibrillary acidic-protein, and LN3 immunoreactivity in nerve sheath tumors and sarcomas. Arch Pathol Lab Med. 1988;112(2):155–60.PubMed Johnson MD, Glick AD, Davis BW. Immunohistochemical evaluation of Leu-7, myelin basic-protein, S100-protein, glial-fibrillary acidic-protein, and LN3 immunoreactivity in nerve sheath tumors and sarcomas. Arch Pathol Lab Med. 1988;112(2):155–60.PubMed
90.
go back to reference Arai H, Hirato J, Nakazato Y. A novel marker of Schwann cells and myelin of the peripheral nervous system. Pathol Int. 1998;48(3):206–14.PubMedCrossRef Arai H, Hirato J, Nakazato Y. A novel marker of Schwann cells and myelin of the peripheral nervous system. Pathol Int. 1998;48(3):206–14.PubMedCrossRef
91.
go back to reference Bohoun CA, Terakawa Y, Goto T, Tanaka S, Kuwae Y, Ohsawa M, et al. Schwannoma-like tumor in the anterior cranial fossa immunonegative for Leu7 but immunopositive for Schwann/2E. Neuropathology. 2017;37(3):265–71.PubMedCrossRef Bohoun CA, Terakawa Y, Goto T, Tanaka S, Kuwae Y, Ohsawa M, et al. Schwannoma-like tumor in the anterior cranial fossa immunonegative for Leu7 but immunopositive for Schwann/2E. Neuropathology. 2017;37(3):265–71.PubMedCrossRef
92.
go back to reference Jauberteau MO, Jacque C, Preud’homme JL, Vallat JM, Baumann N. Human Schwann cells in culture: characterization and reactivity with human anti-sulfated glucuronyl glycolipid monoclonal IgM antibodies. Neurosci Lett. 1992;139(2):161–4.PubMedCrossRef Jauberteau MO, Jacque C, Preud’homme JL, Vallat JM, Baumann N. Human Schwann cells in culture: characterization and reactivity with human anti-sulfated glucuronyl glycolipid monoclonal IgM antibodies. Neurosci Lett. 1992;139(2):161–4.PubMedCrossRef
93.
go back to reference Bock P, Beineke A, Techangamsuwan S, Baumgartner W, Wewetzer K. Differential expression of HNK-1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol. 2007;505(5):572–85.PubMedCrossRef Bock P, Beineke A, Techangamsuwan S, Baumgartner W, Wewetzer K. Differential expression of HNK-1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol. 2007;505(5):572–85.PubMedCrossRef
94.
go back to reference Ezure H, Goto N, Nonaka N, Goto J, Tani H. Morphometric analysis of the human trigeminal nerve. Okajimas Folia Anat Jpn. 2001;78(2–3):49–53.PubMedCrossRef Ezure H, Goto N, Nonaka N, Goto J, Tani H. Morphometric analysis of the human trigeminal nerve. Okajimas Folia Anat Jpn. 2001;78(2–3):49–53.PubMedCrossRef
95.
go back to reference Windle WF. The distribution and probable significance of unmyelinated nerve fibers in the trigeminal nerve of the cat. J Comp Neurol. 1926;41(1):453–77.CrossRef Windle WF. The distribution and probable significance of unmyelinated nerve fibers in the trigeminal nerve of the cat. J Comp Neurol. 1926;41(1):453–77.CrossRef
96.
go back to reference Allen WF. Localization in the ganglion semilunare of the cat. J Comp Neurol. 1924;38(1):1–25.CrossRef Allen WF. Localization in the ganglion semilunare of the cat. J Comp Neurol. 1924;38(1):1–25.CrossRef
97.
go back to reference Young RF, Stevens R. Unmyelinated axons in the trigeminal motor root of human and cat. J Comp Neurol. 1979;183(1):205–14.PubMedCrossRef Young RF, Stevens R. Unmyelinated axons in the trigeminal motor root of human and cat. J Comp Neurol. 1979;183(1):205–14.PubMedCrossRef
98.
go back to reference Cruccu G, Pennisi E, Truini A, Iannetti GD, Romaniello A, Le Pera D, et al. Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain. 2003;126(Pt 10):2246–56.PubMedCrossRef Cruccu G, Pennisi E, Truini A, Iannetti GD, Romaniello A, Le Pera D, et al. Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain. 2003;126(Pt 10):2246–56.PubMedCrossRef
99.
go back to reference Nakai Y, Zheng Y, MacCollin M, Ratner N. Temporal control of Rac in Schwann cell-axon interaction is disrupted in NF2-mutant schwannoma cells. J Neurosci. 2006;26(13):3390–5.PubMedPubMedCentralCrossRef Nakai Y, Zheng Y, MacCollin M, Ratner N. Temporal control of Rac in Schwann cell-axon interaction is disrupted in NF2-mutant schwannoma cells. J Neurosci. 2006;26(13):3390–5.PubMedPubMedCentralCrossRef
100.
go back to reference Parrinello S, Noon LA, Harrisingh MC, Wingfield Digby P, Rosenberg LH, Cremona CA, et al. NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev. 2008;22(23):3335–48.PubMedPubMedCentralCrossRef Parrinello S, Noon LA, Harrisingh MC, Wingfield Digby P, Rosenberg LH, Cremona CA, et al. NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev. 2008;22(23):3335–48.PubMedPubMedCentralCrossRef
101.
go back to reference Schulz A, Buttner R, Hagel C, Baader SL, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132(2):289–307.PubMedPubMedCentralCrossRef Schulz A, Buttner R, Hagel C, Baader SL, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132(2):289–307.PubMedPubMedCentralCrossRef
102.
go back to reference Schulz A, Kyselyova A, Baader SL, Jung MJ, Zoch A, Mautner VF, et al. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling. Brain. 2014;137(Pt 2):420–32.PubMedCrossRef Schulz A, Kyselyova A, Baader SL, Jung MJ, Zoch A, Mautner VF, et al. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling. Brain. 2014;137(Pt 2):420–32.PubMedCrossRef
103.
go back to reference Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.PubMed Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.PubMed
104.
go back to reference Chehrehasa F, Ekberg JA, Lineburg K, Amaya D, Mackay-Sim A, St John JA. Two phases of replacement replenish the olfactory ensheathing cell population after injury in postnatal mice. Glia. 2012;60(2):322–32.PubMedCrossRef Chehrehasa F, Ekberg JA, Lineburg K, Amaya D, Mackay-Sim A, St John JA. Two phases of replacement replenish the olfactory ensheathing cell population after injury in postnatal mice. Glia. 2012;60(2):322–32.PubMedCrossRef
105.
go back to reference Chehrehasa F, Ekberg JA, St John JA. A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation. Neurosci Lett. 2014;563:90–5.PubMedCrossRef Chehrehasa F, Ekberg JA, St John JA. A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation. Neurosci Lett. 2014;563:90–5.PubMedCrossRef
106.
go back to reference Kleijwegt M, Ho V, Visser O, Godefroy W, van der Mey A. Real incidence of vestibular schwannoma? estimations from a national registry. Otol Neurotol. 2016;37(9):1411–7.PubMedCrossRef Kleijwegt M, Ho V, Visser O, Godefroy W, van der Mey A. Real incidence of vestibular schwannoma? estimations from a national registry. Otol Neurotol. 2016;37(9):1411–7.PubMedCrossRef
108.
go back to reference Stangerup SE, Tos M, Thomsen J, Caye-Thomasen P. True incidence of vestibular schwannoma? Neurosurgery. 2010;67(5):1335–40 (Discussion 40).PubMedCrossRef Stangerup SE, Tos M, Thomsen J, Caye-Thomasen P. True incidence of vestibular schwannoma? Neurosurgery. 2010;67(5):1335–40 (Discussion 40).PubMedCrossRef
109.
go back to reference Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.PubMedCrossRef Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.PubMedCrossRef
110.
go back to reference Tarin D. Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol. 2011;21(2):72–82.PubMedCrossRef Tarin D. Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol. 2011;21(2):72–82.PubMedCrossRef
111.
go back to reference Mikula-Pietrasik J, Uruski P, Tykarski A, Ksiazek K. The peritoneal “soil” for a cancerous “seed”: a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci. 2018;75(3):509–25.PubMedCrossRef Mikula-Pietrasik J, Uruski P, Tykarski A, Ksiazek K. The peritoneal “soil” for a cancerous “seed”: a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci. 2018;75(3):509–25.PubMedCrossRef
112.
go back to reference Windus LC, Chehrehasa F, Lineburg KE, Claxton C, Mackay-Sim A, Key B, et al. Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell Mol Life Sci. 2011;68(19):3233–47.PubMedCrossRef Windus LC, Chehrehasa F, Lineburg KE, Claxton C, Mackay-Sim A, Key B, et al. Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell Mol Life Sci. 2011;68(19):3233–47.PubMedCrossRef
113.
go back to reference Windus LC, Claxton C, Allen CL, Key B, St John JA. Motile membrane protrusions regulate cell-cell adhesion and migration of olfactory ensheathing glia. Glia. 2007;55(16):1708–19.PubMedCrossRef Windus LC, Claxton C, Allen CL, Key B, St John JA. Motile membrane protrusions regulate cell-cell adhesion and migration of olfactory ensheathing glia. Glia. 2007;55(16):1708–19.PubMedCrossRef
114.
go back to reference Windus LC, Lineburg KE, Scott SE, Claxton C, Mackay-Sim A, Key B, et al. Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions. Cell Mol Life Sci. 2010;67(10):1735–50.PubMedCrossRef Windus LC, Lineburg KE, Scott SE, Claxton C, Mackay-Sim A, Key B, et al. Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions. Cell Mol Life Sci. 2010;67(10):1735–50.PubMedCrossRef
115.
go back to reference Cao L, Su Z, Zhou Q, Lv B, Liu X, Jiao L, et al. Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia. 2006;54(6):536–44.PubMedCrossRef Cao L, Su Z, Zhou Q, Lv B, Liu X, Jiao L, et al. Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia. 2006;54(6):536–44.PubMedCrossRef
116.
go back to reference Fielder GC, Yang TW, Razdan M, Li Y, Lu J, Perry JK, et al. The GDNF family: a role in cancer? Neoplasia. 2018;20(1):99–117.PubMedCrossRef Fielder GC, Yang TW, Razdan M, Li Y, Lu J, Perry JK, et al. The GDNF family: a role in cancer? Neoplasia. 2018;20(1):99–117.PubMedCrossRef
117.
go back to reference Huang SM, Chen TS, Chiu CM, Chang LK, Liao KF, Tan HM, et al. GDNF increases cell motility in human colon cancer through VEGF-VEGFR1 interaction. Endocr Relat Cancer. 2014;21(1):73–84.PubMedCrossRef Huang SM, Chen TS, Chiu CM, Chang LK, Liao KF, Tan HM, et al. GDNF increases cell motility in human colon cancer through VEGF-VEGFR1 interaction. Endocr Relat Cancer. 2014;21(1):73–84.PubMedCrossRef
118.
go back to reference Huang ZH, Wang Y, Su ZD, Geng JG, Chen YZ, Yuan XB, et al. Slit-2 repels the migration of olfactory ensheathing cells by triggering Ca2+ -dependent cofilin activation and RhoA inhibition. J Cell Sci. 2011;124(Pt 2):186–97.PubMedPubMedCentralCrossRef Huang ZH, Wang Y, Su ZD, Geng JG, Chen YZ, Yuan XB, et al. Slit-2 repels the migration of olfactory ensheathing cells by triggering Ca2+ -dependent cofilin activation and RhoA inhibition. J Cell Sci. 2011;124(Pt 2):186–97.PubMedPubMedCentralCrossRef
119.
go back to reference Su Z, Cao L, Zhu Y, Liu X, Huang Z, Huang A, et al. Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration. J Cell Sci. 2007;120(Pt 11):1877–87.PubMedCrossRef Su Z, Cao L, Zhu Y, Liu X, Huang Z, Huang A, et al. Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration. J Cell Sci. 2007;120(Pt 11):1877–87.PubMedCrossRef
120.
go back to reference Gohrig A, Detjen KM, Hilfenhaus G, Korner JL, Welzel M, Arsenic R, et al. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer. Cancer Res. 2014;74(5):1529–40.PubMedCrossRef Gohrig A, Detjen KM, Hilfenhaus G, Korner JL, Welzel M, Arsenic R, et al. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer. Cancer Res. 2014;74(5):1529–40.PubMedCrossRef
122.
go back to reference Liao H, Duka T, Teng FY, Sun L, Bu WY, Ahmed S, et al. Nogo-66 and myelin-associated glycoprotein (MAG) inhibit the adhesion and migration of Nogo-66 receptor expressing human glioma cells. J Neurochem. 2004;90(5):1156–62.PubMedCrossRef Liao H, Duka T, Teng FY, Sun L, Bu WY, Ahmed S, et al. Nogo-66 and myelin-associated glycoprotein (MAG) inhibit the adhesion and migration of Nogo-66 receptor expressing human glioma cells. J Neurochem. 2004;90(5):1156–62.PubMedCrossRef
123.
go back to reference Vukovic J, Ruitenberg MJ, Roet K, Franssen E, Arulpragasam A, Sasaki T, et al. The glycoprotein fibulin-3 regulates morphology and motility of olfactory ensheathing cells in vitro. Glia. 2009;57(4):424–43.PubMedCrossRef Vukovic J, Ruitenberg MJ, Roet K, Franssen E, Arulpragasam A, Sasaki T, et al. The glycoprotein fibulin-3 regulates morphology and motility of olfactory ensheathing cells in vitro. Glia. 2009;57(4):424–43.PubMedCrossRef
124.
go back to reference Hu B, Nandhu MS, Sim H, Agudelo-Garcia PA, Saldivar JC, Dolan CE, et al. Fibulin-3 promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling. Cancer Res. 2012;72(15):3873–85.PubMedPubMedCentralCrossRef Hu B, Nandhu MS, Sim H, Agudelo-Garcia PA, Saldivar JC, Dolan CE, et al. Fibulin-3 promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling. Cancer Res. 2012;72(15):3873–85.PubMedPubMedCentralCrossRef
125.
go back to reference Hu B, Thirtamara-Rajamani KK, Sim H, Viapiano MS. Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion. Mol Cancer Res. 2009;7(11):1756–70.PubMedPubMedCentralCrossRef Hu B, Thirtamara-Rajamani KK, Sim H, Viapiano MS. Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion. Mol Cancer Res. 2009;7(11):1756–70.PubMedPubMedCentralCrossRef
126.
go back to reference Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JA, et al. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev. 2014;27(4):691–726.PubMedPubMedCentralCrossRef Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JA, et al. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev. 2014;27(4):691–726.PubMedPubMedCentralCrossRef
127.
go back to reference Ekberg JA, Amaya D, Chehrehasa F, Lineburg K, Claxton C, Windus LC, et al. OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro. J Neurosci Methods. 2011;196(1):88–98.PubMedCrossRef Ekberg JA, Amaya D, Chehrehasa F, Lineburg K, Claxton C, Windus LC, et al. OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro. J Neurosci Methods. 2011;196(1):88–98.PubMedCrossRef
128.
go back to reference Sauter KA, Pridans C, Sehgal A, Bain CC, Scott C, Moffat L, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS ONE. 2014;9(8):e105429.PubMedPubMedCentralCrossRef Sauter KA, Pridans C, Sehgal A, Bain CC, Scott C, Moffat L, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS ONE. 2014;9(8):e105429.PubMedPubMedCentralCrossRef
129.
go back to reference St John JA, Ekberg JA, Dando SJ, Meedeniya AC, Horton RE, Batzloff M, et al. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. MBio. 2014;5(2):e00025.PubMedPubMedCentralCrossRef St John JA, Ekberg JA, Dando SJ, Meedeniya AC, Horton RE, Batzloff M, et al. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. MBio. 2014;5(2):e00025.PubMedPubMedCentralCrossRef
130.
go back to reference Nazareth L, Tello Velasquez J, Lineburg KE, Chehrehasa F, St John JA, Ekberg JA. Differing phagocytic capacities of accessory and main olfactory ensheathing cells and the implication for olfactory glia transplantation therapies. Mol Cell Neurosci. 2015;65:92–101.PubMedCrossRef Nazareth L, Tello Velasquez J, Lineburg KE, Chehrehasa F, St John JA, Ekberg JA. Differing phagocytic capacities of accessory and main olfactory ensheathing cells and the implication for olfactory glia transplantation therapies. Mol Cell Neurosci. 2015;65:92–101.PubMedCrossRef
131.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.PubMedPubMedCentralCrossRef Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.PubMedPubMedCentralCrossRef
132.
go back to reference Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7.PubMedPubMedCentralCrossRef Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7.PubMedPubMedCentralCrossRef
133.
go back to reference Gomez RM, Sanchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, et al. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia. 2018;66(7):1267–301.PubMedCrossRef Gomez RM, Sanchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, et al. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia. 2018;66(7):1267–301.PubMedCrossRef
134.
go back to reference Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.PubMedCrossRef Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.PubMedCrossRef
135.
go back to reference Sepahi A, Casadei E, Tacchi L, Munoz P, LaPatra SE, Salinas I. Tissue microenvironments in the nasal epithelium of rainbow trout (oncorhynchus mykiss) define two distinct CD8alpha + cell populations and establish regional immunity. J Immunol. 2016;197(11):4453–63.PubMedCrossRef Sepahi A, Casadei E, Tacchi L, Munoz P, LaPatra SE, Salinas I. Tissue microenvironments in the nasal epithelium of rainbow trout (oncorhynchus mykiss) define two distinct CD8alpha + cell populations and establish regional immunity. J Immunol. 2016;197(11):4453–63.PubMedCrossRef
136.
go back to reference Chang GH, Barbaro NM, Pieper RO. Phosphatidylserine-dependent phagocytosis of apoptotic glioma cells by normal human microglia, astrocytes, and glioma cells. Neuro Oncol. 2000;2(3):174–83.PubMedPubMedCentralCrossRef Chang GH, Barbaro NM, Pieper RO. Phosphatidylserine-dependent phagocytosis of apoptotic glioma cells by normal human microglia, astrocytes, and glioma cells. Neuro Oncol. 2000;2(3):174–83.PubMedPubMedCentralCrossRef
137.
go back to reference Kopatz J, Beutner C, Welle K, Bodea LG, Reinhardt J, Claude J, et al. Siglec-h on activated microglia for recognition and engulfment of glioma cells. Glia. 2013;61(7):1122–33.PubMedCrossRef Kopatz J, Beutner C, Welle K, Bodea LG, Reinhardt J, Claude J, et al. Siglec-h on activated microglia for recognition and engulfment of glioma cells. Glia. 2013;61(7):1122–33.PubMedCrossRef
138.
go back to reference Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013;7:6.PubMedPubMedCentralCrossRef Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013;7:6.PubMedPubMedCentralCrossRef
139.
go back to reference de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.CrossRefPubMed de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.CrossRefPubMed
140.
go back to reference Hashimoto Y, Moki T, Takizawa T, Shiratsuchi A, Nakanishi Y. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol. 2007;178(4):2448–57.PubMedCrossRef Hashimoto Y, Moki T, Takizawa T, Shiratsuchi A, Nakanishi Y. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol. 2007;178(4):2448–57.PubMedCrossRef
141.
go back to reference Fulci G, Dmitrieva N, Gianni D, Fontana EJ, Pan X, Lu Y, et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 2007;67(19):9398–406.PubMedPubMedCentralCrossRef Fulci G, Dmitrieva N, Gianni D, Fontana EJ, Pan X, Lu Y, et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 2007;67(19):9398–406.PubMedPubMedCentralCrossRef
142.
go back to reference Hadfield KD, Smith MJ, Urquhart JE, Wallace AJ, Bowers NL, King AT, et al. Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas. Oncogene. 2010;29(47):6216–21.PubMedCrossRef Hadfield KD, Smith MJ, Urquhart JE, Wallace AJ, Bowers NL, King AT, et al. Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas. Oncogene. 2010;29(47):6216–21.PubMedCrossRef
144.
go back to reference Mindos T, Dun XP, North K, Doddrell RD, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216(2):495–510.PubMedPubMedCentralCrossRef Mindos T, Dun XP, North K, Doddrell RD, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216(2):495–510.PubMedPubMedCentralCrossRef
145.
go back to reference Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol. 2006;16(5):492–500.PubMedCrossRef Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol. 2006;16(5):492–500.PubMedCrossRef
147.
go back to reference Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, et al. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron. 1995;15(3):585–96.PubMedCrossRef Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, et al. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron. 1995;15(3):585–96.PubMedCrossRef
148.
go back to reference Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378(6555):386–90.PubMedCrossRef Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378(6555):386–90.PubMedCrossRef
149.
go back to reference Pollock GS, Franceschini IA, Graham G, Marchionni MA, Barnett SC. Neuregulin is a mitogen and survival factor for olfactory bulb ensheathing cells and an isoform is produced by astrocytes. Eur J Neurosci. 1999;11(3):769–80.PubMedCrossRef Pollock GS, Franceschini IA, Graham G, Marchionni MA, Barnett SC. Neuregulin is a mitogen and survival factor for olfactory bulb ensheathing cells and an isoform is produced by astrocytes. Eur J Neurosci. 1999;11(3):769–80.PubMedCrossRef
150.
go back to reference Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res. 2000;61(2):172–85.PubMedCrossRef Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res. 2000;61(2):172–85.PubMedCrossRef
151.
go back to reference Hayes DA, Kunde DA, Taylor RL, Pyecroft SB, Sohal SS, Snow ET. ERBB3: a potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1). PLoS ONE. 2017;12(6):e0177919.PubMedPubMedCentralCrossRef Hayes DA, Kunde DA, Taylor RL, Pyecroft SB, Sohal SS, Snow ET. ERBB3: a potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1). PLoS ONE. 2017;12(6):e0177919.PubMedPubMedCentralCrossRef
152.
go back to reference Bush ML, Burns SS, Oblinger J, Davletova S, Chang LS, Welling DB, et al. Treatment of vestibular schwannoma cells with ErbB inhibitors. Otol Neurotol. 2012;33(2):244–57.PubMedPubMedCentralCrossRef Bush ML, Burns SS, Oblinger J, Davletova S, Chang LS, Welling DB, et al. Treatment of vestibular schwannoma cells with ErbB inhibitors. Otol Neurotol. 2012;33(2):244–57.PubMedPubMedCentralCrossRef
154.
go back to reference Yang DP, Zhang DP, Mak KS, Bonder DE, Pomeroy SL, Kim HA. Schwann cell proliferation during Wallerian degeneration is not necessary for regeneration and remyelination of the peripheral nerves: axon-dependent removal of newly generated Schwann cells by apoptosis. Mol Cell Neurosci. 2008;38(1):80–8.PubMedPubMedCentralCrossRef Yang DP, Zhang DP, Mak KS, Bonder DE, Pomeroy SL, Kim HA. Schwann cell proliferation during Wallerian degeneration is not necessary for regeneration and remyelination of the peripheral nerves: axon-dependent removal of newly generated Schwann cells by apoptosis. Mol Cell Neurosci. 2008;38(1):80–8.PubMedPubMedCentralCrossRef
155.
go back to reference Tello Velasquez J, Nazareth L, Quinn RJ, Ekberg JA, St John JA. Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin. Neuroscience. 2016;324:140–50.PubMedCrossRef Tello Velasquez J, Nazareth L, Quinn RJ, Ekberg JA, St John JA. Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin. Neuroscience. 2016;324:140–50.PubMedCrossRef
156.
go back to reference Tello Velasquez J, Watts ME, Todorovic M, Nazareth L, Pastrana E, Diaz-Nido J, et al. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS ONE. 2014;9(10):e111787.PubMedPubMedCentralCrossRef Tello Velasquez J, Watts ME, Todorovic M, Nazareth L, Pastrana E, Diaz-Nido J, et al. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS ONE. 2014;9(10):e111787.PubMedPubMedCentralCrossRef
157.
go back to reference Tofaris GK, Patterson PH, Jessen KR, Mirsky R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci. 2002;22(15):6696–703.PubMedPubMedCentralCrossRef Tofaris GK, Patterson PH, Jessen KR, Mirsky R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci. 2002;22(15):6696–703.PubMedPubMedCentralCrossRef
158.
go back to reference Mueller M, Leonhard C, Wacker K, Ringelstein EB, Okabe M, Hickey WF, et al. Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab Invest. 2003;83(2):175–85.PubMedCrossRef Mueller M, Leonhard C, Wacker K, Ringelstein EB, Okabe M, Hickey WF, et al. Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab Invest. 2003;83(2):175–85.PubMedCrossRef
159.
go back to reference Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167(2):195–205.PubMedPubMedCentralCrossRef Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167(2):195–205.PubMedPubMedCentralCrossRef
160.
go back to reference Kandathil CK, Dilwali S, Wu CC, Ibrahimov M, McKenna MJ, Lee H, et al. Aspirin intake correlates with halted growth of sporadic vestibular schwannoma in vivo. Otol Neurotol. 2014;35(2):353–7.PubMedCrossRef Kandathil CK, Dilwali S, Wu CC, Ibrahimov M, McKenna MJ, Lee H, et al. Aspirin intake correlates with halted growth of sporadic vestibular schwannoma in vivo. Otol Neurotol. 2014;35(2):353–7.PubMedCrossRef
161.
go back to reference Elmaci I, Altinoz MA, Sari R. Immune pathobiology of schwannomas: a concise review. J Neurol Surg A Cent Eur Neurosurg. 2018;79(2):159–62.PubMedCrossRef Elmaci I, Altinoz MA, Sari R. Immune pathobiology of schwannomas: a concise review. J Neurol Surg A Cent Eur Neurosurg. 2018;79(2):159–62.PubMedCrossRef
Metadata
Title
Why are olfactory ensheathing cell tumors so rare?
Authors
Mariyam Murtaza
Anu Chacko
Ali Delbaz
Ronak Reshamwala
Andrew Rayfield
Brent McMonagle
James A. St John
Jenny A. K. Ekberg
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0989-5

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine