Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2019

Open Access 01-12-2019 | Insulins | Original investigation

The association between fasting plasma glucose and glycated hemoglobin in the prediabetes range and future development of hypertension

Authors: Mika Geva, Gadi Shlomai, Anat Berkovich, Elad Maor, Avshalom Leibowitz, Alexander Tenenbaum, Ehud Grossman

Published in: Cardiovascular Diabetology | Issue 1/2019

Login to get access

Abstract

Background

Prediabetes is a well-established risk factor for progression to overt diabetes mellitus (DM), which is in turn associated with development of hypertension (HTN) and vice versa. However, the role of prediabetes and HbA1c in particular as an independent risk factor for the development of hypertension is unclear.

Aim

In this current study, we aimed to evaluate the association between both fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) levels in the prediabetes range and development of HTN among a large cohort of normotensive subjects.

Design and methods

We investigated 5016 normotensive participants without DM and other cardiovascular risk factors who were annually screened in a tertiary medical center. Subjects were divided into normoglycemic and prediabetic groups. Normoglycemia was defined as HbA1c < 5.7% and FPG < 100 mg/dl. Prediabetes was defined according to the ADA criteria, i.e., 6.5% > HbA1c ≥ 5.7% or impaired fasting glucose (IFG):126 mg/dl > FPG ≥ 100 mg/dl. Subgroup analysis was made by dividing participants into four groups according to FPG and HbA1C levels, i.e., normoglycemia, impaired HbA1c only, IFG only, and both parameters impaired.

Results

During a follow-up of 3.7 ± 2.9 years, 318 (6.3%) subjects developed HTN. A cumulative hazard function for the development of hypertension showed a 2.89-fold ([95% CI 2.19–3.83], p < .0001) increased risk for HTN in the prediabetic population. In a multivariable Cox proportional hazard regression model adjusted to common confounding risk factors for HTN, prediabetes was found to be independently associated with a 1.95-fold ([95%, CI 1.43–2.52] p < .0001) increased risk for hypertension. Impaired HbA1C only was not found to be independently associated with HTN, while IFG only showed a 2.13-fold (95%, [CI 1.46–3.11] p < .0001) increased risk for HTN compared to normoglycemic, and a 2.55-fold ([95% CI 1.85–3.51] p < .0001) increased risk for HTN when both parameters impaired.

Conclusion

Our study demonstrates that FPG in the prediabetes range, albeit not glycated hemoglobin, is independently and significantly associated with future development of HTN. Therefore, our findings further highlight the pivotal predictive role of IFG for HTN development as opposed to the limited independent role of abnormal HbA1c levels.
Appendix
Available only for authorised users
Literature
2.
go back to reference DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94.CrossRef DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94.CrossRef
3.
go back to reference Shahim B, Gyberg V, De Bacquer D, Kotseva K, De Backer G, Schnell O, et al. Undetected dysglycaemia common in primary care patients treated for hypertension and/or dyslipidaemia: on the need for a screening strategy in clinical practice. A report from EUROASPIRE IV a registry from the EuroObservational Research Programme of the European Society of Cardiology. Cardiovasc Diabetol. 2018;17(1):21.CrossRefPubMedPubMedCentral Shahim B, Gyberg V, De Bacquer D, Kotseva K, De Backer G, Schnell O, et al. Undetected dysglycaemia common in primary care patients treated for hypertension and/or dyslipidaemia: on the need for a screening strategy in clinical practice. A report from EUROASPIRE IV a registry from the EuroObservational Research Programme of the European Society of Cardiology. Cardiovasc Diabetol. 2018;17(1):21.CrossRefPubMedPubMedCentral
4.
go back to reference Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension (Dallas, Tex: 1979). 2001;37(4):1053–9.CrossRef Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension (Dallas, Tex: 1979). 2001;37(4):1053–9.CrossRef
5.
go back to reference Cheung BM, Wat NM, Tso AW, Tam S, Thomas GN, Leung GM, et al. Association between raised blood pressure and dysglycemia in Hong Kong Chinese. Diabetes Care. 2008;31(9):1889–91.CrossRefPubMedPubMedCentral Cheung BM, Wat NM, Tso AW, Tam S, Thomas GN, Leung GM, et al. Association between raised blood pressure and dysglycemia in Hong Kong Chinese. Diabetes Care. 2008;31(9):1889–91.CrossRefPubMedPubMedCentral
6.
go back to reference Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet (London, England). 2007;370(9587):591–603.CrossRef Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet (London, England). 2007;370(9587):591–603.CrossRef
7.
go back to reference Ratto E, Leoncini G, Viazzi F, Vaccaro V, Parodi A, Falqui V, et al. Metabolic syndrome and cardiovascular risk in primary hypertension. J Am Soc Nephrol JASN. 2006;17(4 Suppl 2):S120–2.CrossRefPubMed Ratto E, Leoncini G, Viazzi F, Vaccaro V, Parodi A, Falqui V, et al. Metabolic syndrome and cardiovascular risk in primary hypertension. J Am Soc Nephrol JASN. 2006;17(4 Suppl 2):S120–2.CrossRefPubMed
8.
go back to reference Association American Diabetes. Updates to the standards of medical care in diabetes-2018. Diabetes Care. 2018;41(9):2045–7.CrossRef Association American Diabetes. Updates to the standards of medical care in diabetes-2018. Diabetes Care. 2018;41(9):2045–7.CrossRef
9.
go back to reference Sprafka JM, Bender AP, Jagger HG. Prevalence of hypertension and associated risk factors among diabetic individuals. The Three-City Study. Diabetes care. 1988;11(1):17–22.CrossRefPubMed Sprafka JM, Bender AP, Jagger HG. Prevalence of hypertension and associated risk factors among diabetic individuals. The Three-City Study. Diabetes care. 1988;11(1):17–22.CrossRefPubMed
10.
go back to reference Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342(13):905–12.CrossRefPubMed Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342(13):905–12.CrossRefPubMed
11.
go back to reference Fagot-Campagna A, Balkau B, Simon D, Ducimetiere P, Eschwege E. Is insulin an independent risk factor for hypertension? The paris prospective study. Int J Epidemiol. 1997;26(3):542–50.CrossRefPubMed Fagot-Campagna A, Balkau B, Simon D, Ducimetiere P, Eschwege E. Is insulin an independent risk factor for hypertension? The paris prospective study. Int J Epidemiol. 1997;26(3):542–50.CrossRefPubMed
12.
go back to reference Lee CJ, Lim NK, Kim HC, Ihm SH, Lee HY, Park HY, et al. Impaired fasting glucose and impaired glucose tolerance do not predict hypertension: a community cohort study. Am J Hypertens. 2015;28(4):493–500.CrossRefPubMed Lee CJ, Lim NK, Kim HC, Ihm SH, Lee HY, Park HY, et al. Impaired fasting glucose and impaired glucose tolerance do not predict hypertension: a community cohort study. Am J Hypertens. 2015;28(4):493–500.CrossRefPubMed
13.
go back to reference Levin G, Kestenbaum B, Ida Chen YD, Jacobs DR Jr, Psaty BM, Rotter JI, et al. Glucose, insulin, and incident hypertension in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2010;172(10):1144–54.CrossRefPubMedPubMedCentral Levin G, Kestenbaum B, Ida Chen YD, Jacobs DR Jr, Psaty BM, Rotter JI, et al. Glucose, insulin, and incident hypertension in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2010;172(10):1144–54.CrossRefPubMedPubMedCentral
14.
go back to reference Morio M, Inoue M, Inoue K, Akimoto K. Impaired fasting glucose as an independent risk factor for hypertension among healthy middle-aged Japanese subjects with optimal blood pressure: the Yuport Medical Checkup Centre retrospective cohort study. Diabetol Metab Syndr. 2013;5(1):81.CrossRefPubMedPubMedCentral Morio M, Inoue M, Inoue K, Akimoto K. Impaired fasting glucose as an independent risk factor for hypertension among healthy middle-aged Japanese subjects with optimal blood pressure: the Yuport Medical Checkup Centre retrospective cohort study. Diabetol Metab Syndr. 2013;5(1):81.CrossRefPubMedPubMedCentral
15.
go back to reference Suematsu C, Hayashi T, Fujii S, Endo G, Tsumura K, Okada K, et al. Impaired fasting glucose and the risk of hypertension in Japanese men between the 1980s and the 1990s. The Osaka Health Survey. Diabetes Care. 1999;22(2):228–32.CrossRefPubMed Suematsu C, Hayashi T, Fujii S, Endo G, Tsumura K, Okada K, et al. Impaired fasting glucose and the risk of hypertension in Japanese men between the 1980s and the 1990s. The Osaka Health Survey. Diabetes Care. 1999;22(2):228–32.CrossRefPubMed
16.
go back to reference Zhao Y, Sun H, Wang B, Zhang M, Luo X, Ren Y, et al. Impaired fasting glucose predicts the development of hypertension over 6 years in female adults: results from the rural Chinese cohort study. J Diabetes Complicat. 2017;31(7):1090–5.CrossRefPubMed Zhao Y, Sun H, Wang B, Zhang M, Luo X, Ren Y, et al. Impaired fasting glucose predicts the development of hypertension over 6 years in female adults: results from the rural Chinese cohort study. J Diabetes Complicat. 2017;31(7):1090–5.CrossRefPubMed
17.
go back to reference Kuwabara M, Chintaluru Y, Kanbay M, Niwa K, Hisatome I, Andres-Hernando A, et al. Fasting blood glucose is predictive of hypertension in a general Japanese population. J Hypertens. 2019;37(1):167–74.PubMed Kuwabara M, Chintaluru Y, Kanbay M, Niwa K, Hisatome I, Andres-Hernando A, et al. Fasting blood glucose is predictive of hypertension in a general Japanese population. J Hypertens. 2019;37(1):167–74.PubMed
18.
go back to reference Bower JK, Appel LJ, Matsushita K, Young JH, Alonso A, Brancati FL, et al. Glycated hemoglobin and risk of hypertension in the atherosclerosis risk in communities study. Diabetes Care. 2012;35(5):1031–7.CrossRefPubMedPubMedCentral Bower JK, Appel LJ, Matsushita K, Young JH, Alonso A, Brancati FL, et al. Glycated hemoglobin and risk of hypertension in the atherosclerosis risk in communities study. Diabetes Care. 2012;35(5):1031–7.CrossRefPubMedPubMedCentral
19.
go back to reference Heianza Y, Arase Y, Kodama S, Hsieh SD, Tsuji H, Saito K, et al. Fasting glucose and HbA1c levels as risk factors for the development of hypertension in Japanese individuals: Toranomon hospital health management center study 16 (TOPICS 16). J Hum Hypertens. 2015;29(4):254–9.CrossRefPubMed Heianza Y, Arase Y, Kodama S, Hsieh SD, Tsuji H, Saito K, et al. Fasting glucose and HbA1c levels as risk factors for the development of hypertension in Japanese individuals: Toranomon hospital health management center study 16 (TOPICS 16). J Hum Hypertens. 2015;29(4):254–9.CrossRefPubMed
20.
go back to reference Britton KA, Pradhan AD, Gaziano JM, Manson JE, Ridker PM, Buring JE, et al. Hemoglobin A1c, body mass index, and the risk of hypertension in women. Am J Hypertens. 2011;24(3):328–34.CrossRefPubMed Britton KA, Pradhan AD, Gaziano JM, Manson JE, Ridker PM, Buring JE, et al. Hemoglobin A1c, body mass index, and the risk of hypertension in women. Am J Hypertens. 2011;24(3):328–34.CrossRefPubMed
21.
go back to reference Lukich E, Matas Z, Boaz M, Shargorodsky M. Increasing derangement of glucose homeostasis is associated with increased arterial stiffness in patients with diabetes, impaired fasting glucose and normal controls. Diabetes Metab Res Rev. 2010;26(5):365–70.CrossRefPubMed Lukich E, Matas Z, Boaz M, Shargorodsky M. Increasing derangement of glucose homeostasis is associated with increased arterial stiffness in patients with diabetes, impaired fasting glucose and normal controls. Diabetes Metab Res Rev. 2010;26(5):365–70.CrossRefPubMed
22.
go back to reference Shin JY, Lee HR, Lee DC. Increased arterial stiffness in healthy subjects with high-normal glucose levels and in subjects with pre-diabetes. Cardiovasc Diabetol. 2011;10:30.CrossRefPubMedPubMedCentral Shin JY, Lee HR, Lee DC. Increased arterial stiffness in healthy subjects with high-normal glucose levels and in subjects with pre-diabetes. Cardiovasc Diabetol. 2011;10:30.CrossRefPubMedPubMedCentral
23.
go back to reference Tomiyama H, Hashimoto H, Hirayama Y, Yambe M, Yamada J, Koji Y, et al. Synergistic acceleration of arterial stiffening in the presence of raised blood pressure and raised plasma glucose. Hypertension (Dallas, Tex: 1979). 2006;47(2):180–8.CrossRef Tomiyama H, Hashimoto H, Hirayama Y, Yambe M, Yamada J, Koji Y, et al. Synergistic acceleration of arterial stiffening in the presence of raised blood pressure and raised plasma glucose. Hypertension (Dallas, Tex: 1979). 2006;47(2):180–8.CrossRef
24.
go back to reference Lehmann ED, Gosling RG, Sonksen PH. Arterial wall compliance in diabetes. Diabet Med J Br Diabet Assoc. 1992;9(2):114–9.CrossRef Lehmann ED, Gosling RG, Sonksen PH. Arterial wall compliance in diabetes. Diabet Med J Br Diabet Assoc. 1992;9(2):114–9.CrossRef
25.
go back to reference Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107(22):2864–9.CrossRefPubMed Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107(22):2864–9.CrossRefPubMed
26.
go back to reference Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.CrossRefPubMed Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.CrossRefPubMed
27.
go back to reference Madonna R, Balistreri CR, Geng YJ, De Caterina R. Diabetic microangiopathy: pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol. 2017;90:1–7.CrossRefPubMed Madonna R, Balistreri CR, Geng YJ, De Caterina R. Diabetic microangiopathy: pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol. 2017;90:1–7.CrossRefPubMed
29.
go back to reference American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2014;37(Suppl 1):S81–90.CrossRef American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2014;37(Suppl 1):S81–90.CrossRef
30.
go back to reference Vaccaro O, Imperatore G, Iovino V, Iovine C, Rivellese AA, Riccardi G. Does impaired glucose tolerance predict hypertension? A prospective analysis. Diabetologia. 1996;39(1):70–6.PubMed Vaccaro O, Imperatore G, Iovino V, Iovine C, Rivellese AA, Riccardi G. Does impaired glucose tolerance predict hypertension? A prospective analysis. Diabetologia. 1996;39(1):70–6.PubMed
31.
go back to reference Liese AD, Mayer-Davis EJ, Chambless LE, Folsom AR, Sharrett AR, Brancati FL, et al. Elevated fasting insulin predicts incident hypertension: the ARIC study Atherosclerosis risk in communities study investigators. J Hypertens. 1999;17(8):1169–77.CrossRefPubMed Liese AD, Mayer-Davis EJ, Chambless LE, Folsom AR, Sharrett AR, Brancati FL, et al. Elevated fasting insulin predicts incident hypertension: the ARIC study Atherosclerosis risk in communities study investigators. J Hypertens. 1999;17(8):1169–77.CrossRefPubMed
32.
go back to reference Guo F, Moellering DR, Garvey WT. Use of HbA1c for diagnoses of diabetes and prediabetes: comparison with diagnoses based on fasting and 2-hr glucose values and effects of gender, race, and age. Metab Syndr Related Disord. 2014;12(5):258–68.CrossRef Guo F, Moellering DR, Garvey WT. Use of HbA1c for diagnoses of diabetes and prediabetes: comparison with diagnoses based on fasting and 2-hr glucose values and effects of gender, race, and age. Metab Syndr Related Disord. 2014;12(5):258–68.CrossRef
33.
go back to reference Hu Y, Liu W, Chen Y, Zhang M, Wang L, Zhou H, et al. Combined use of fasting plasma glucose and glycated hemoglobin A1c in the screening of diabetes and impaired glucose tolerance. Acta Diabetol. 2010;47(3):231–6.CrossRefPubMed Hu Y, Liu W, Chen Y, Zhang M, Wang L, Zhou H, et al. Combined use of fasting plasma glucose and glycated hemoglobin A1c in the screening of diabetes and impaired glucose tolerance. Acta Diabetol. 2010;47(3):231–6.CrossRefPubMed
34.
go back to reference Ho-Pham LT, Nguyen UDT, Tran TX, Nguyen TV. Discordance in the diagnosis of diabetes: comparison between HbA1c and fasting plasma glucose. PLoS ONE. 2017;12(8):e0182192.CrossRefPubMedPubMedCentral Ho-Pham LT, Nguyen UDT, Tran TX, Nguyen TV. Discordance in the diagnosis of diabetes: comparison between HbA1c and fasting plasma glucose. PLoS ONE. 2017;12(8):e0182192.CrossRefPubMedPubMedCentral
35.
go back to reference Heianza Y, Hara S, Arase Y, Saito K, Fujiwara K, Tsuji H, et al. HbA1c 5.7–6.4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet (London, England). 2011;378(9786):147–55.CrossRef Heianza Y, Hara S, Arase Y, Saito K, Fujiwara K, Tsuji H, et al. HbA1c 5.7–6.4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet (London, England). 2011;378(9786):147–55.CrossRef
36.
go back to reference Haffner SM, Mykkanen L, Festa A, Burke JP, Stern MP. Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state. Circulation. 2000;101(9):975–80.CrossRefPubMed Haffner SM, Mykkanen L, Festa A, Burke JP, Stern MP. Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state. Circulation. 2000;101(9):975–80.CrossRefPubMed
37.
go back to reference Jarmul JA, Pignone M, Pletcher MJ. Interpreting hemoglobin A1C in combination with conventional risk factors for prediction of cardiovascular risk. Circu Cardiovasc Qual Outcomes. 2015;8(5):501–7.CrossRef Jarmul JA, Pignone M, Pletcher MJ. Interpreting hemoglobin A1C in combination with conventional risk factors for prediction of cardiovascular risk. Circu Cardiovasc Qual Outcomes. 2015;8(5):501–7.CrossRef
38.
go back to reference Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am J Med. 2007;120(8):720–7.CrossRefPubMedPubMedCentral Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am J Med. 2007;120(8):720–7.CrossRefPubMedPubMedCentral
39.
go back to reference Kim JH, Shin JH, Lee HJ, Kim SY, Bae HY. Discordance between HbA1c and fasting plasma glucose criteria for diabetes screening is associated with obesity and old age in Korean individuals. Diabetes Res Clin Pract. 2011;94(2):e27–9.CrossRefPubMed Kim JH, Shin JH, Lee HJ, Kim SY, Bae HY. Discordance between HbA1c and fasting plasma glucose criteria for diabetes screening is associated with obesity and old age in Korean individuals. Diabetes Res Clin Pract. 2011;94(2):e27–9.CrossRefPubMed
40.
go back to reference Lipska KJ, De Rekeneire N, Van Ness PH, Johnson KC, Kanaya A, Koster A, et al. Identifying dysglycemic states in older adults: implications of the emerging use of hemoglobin A1c. J Clin Endocrinol Metab. 2010;95(12):5289–95.CrossRefPubMedPubMedCentral Lipska KJ, De Rekeneire N, Van Ness PH, Johnson KC, Kanaya A, Koster A, et al. Identifying dysglycemic states in older adults: implications of the emerging use of hemoglobin A1c. J Clin Endocrinol Metab. 2010;95(12):5289–95.CrossRefPubMedPubMedCentral
Metadata
Title
The association between fasting plasma glucose and glycated hemoglobin in the prediabetes range and future development of hypertension
Authors
Mika Geva
Gadi Shlomai
Anat Berkovich
Elad Maor
Avshalom Leibowitz
Alexander Tenenbaum
Ehud Grossman
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2019
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-019-0859-4

Other articles of this Issue 1/2019

Cardiovascular Diabetology 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.