Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2018

Open Access 01-12-2018 | Original investigation

Cognitive function in adolescence and the risk for premature diabetes and cardiovascular mortality in adulthood

Authors: Gilad Twig, Amir Tirosh, Estela Derazne, Ziona Haklai, Nehama Goldberger, Arnon Afek, Hertzel C. Gerstein, Jeremy D. Kark, Tali Cukierman-Yaffe

Published in: Cardiovascular Diabetology | Issue 1/2018

Login to get access

Abstract

Background

Epidemiological studies have demonstrated a relationship between cognitive function in youth and the future risk of death. Less is known regarding the relationship with diabetes related death. This study assessed the relationship between cognitive function in late adolescence and the risk for diabetes, cardiovascular- (CVD) and all-cause mortality in adulthood.

Methods

This retrospective study linked data from 2,277,188 16–19 year olds who had general intelligence tests (GIT) conducted during pre-military recruitment assessment with cause of death as coded by the Israel Central Bureau of Statistics. The associations between cognitive function and cause-specific mortality were assessed using Cox models.

Results

There were 31,268 deaths that were recorded during 41,916,603 person-years of follow-up, with a median follow-up of 19.2 (IQR 10.7, 29.5) years. 3068, 1443, 514 and 457 deaths were attributed to CVD, CHD, stroke, and diabetes, respectively. Individuals in the lowest GIT vs. highest GIT quintiles in unadjusted models had the highest risk for all-cause mortality (HR 1.84, 95% CI 1.78, 1.91), total CVD (HR 3.32, 95% CI 2.93, 3.75), CHD (HR 3.49 95% CI 2.92, 4.18), stroke (HR 3.96 95% CI 2.85, 5.5) and diabetes-related (HR 6.96 95% CI 4.68, 10.36) mortality. These HRs were attenuated following adjustment for age, sex, birth year, body-mass index, residential socioeconomic status, education and country of origin for all-cause (HR 1.23, 95% CI 1.17, 1.28), CVD (HR 1.76, 95% CI 1.52, 2.04), CHD (HR 1.7 95% CI 1.37, 2.11), stroke (HR 2.03, 95% CI 1.39, 2.98) and diabetes-related (HR 3.14 95% CI 2.00, 4.94) mortality. Results persisted in a sensitivity analyses limited to participants with unimpaired health at baseline and that accounted competing risk.

Conclusions

This analysis of over 2 million demonstrates a strong relationship between cognitive function at youth and the risk for diabetes, all-cause and CVD-related mortality independent of adolescent obesity.
Appendix
Available only for authorised users
Literature
2.
go back to reference Pavlik VN, de Moraes SA, Szklo M, Knopman DS, Mosley TH Jr, Hyman DJ. Relation between cognitive function and mortality in middle-aged adults: the atherosclerosis risk in communities study. Am J Epidemiol. 2003;157(4):327–34.PubMedCrossRef Pavlik VN, de Moraes SA, Szklo M, Knopman DS, Mosley TH Jr, Hyman DJ. Relation between cognitive function and mortality in middle-aged adults: the atherosclerosis risk in communities study. Am J Epidemiol. 2003;157(4):327–34.PubMedCrossRef
3.
go back to reference Deary IJ, Der G. Reaction time explains IQ’s association with death. Psychol Sci. 2005;16(1):64–9.PubMedCrossRef Deary IJ, Der G. Reaction time explains IQ’s association with death. Psychol Sci. 2005;16(1):64–9.PubMedCrossRef
4.
go back to reference Cukic I, Brett CE, Calvin CM, Batty GD, Deary IJ. Childhood IQ and survival to 79: follow-up of 94% of the Scottish mental survey 1947. Intelligence. 2017;63:45–50.PubMedPubMedCentralCrossRef Cukic I, Brett CE, Calvin CM, Batty GD, Deary IJ. Childhood IQ and survival to 79: follow-up of 94% of the Scottish mental survey 1947. Intelligence. 2017;63:45–50.PubMedPubMedCentralCrossRef
5.
go back to reference Calvin CM, Deary IJ, Fenton C, et al. Intelligence in youth and all-cause-mortality: systematic review with meta-analysis. Int J Epidemiol. 2011;40(3):626–44.CrossRefPubMed Calvin CM, Deary IJ, Fenton C, et al. Intelligence in youth and all-cause-mortality: systematic review with meta-analysis. Int J Epidemiol. 2011;40(3):626–44.CrossRefPubMed
6.
go back to reference Calvin CM, Batty GD, Der G, et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ. 2017;357:j2708.PubMedPubMedCentralCrossRef Calvin CM, Batty GD, Der G, et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ. 2017;357:j2708.PubMedPubMedCentralCrossRef
7.
go back to reference Batty GD, Wennerstad KM, Smith GD, et al. IQ in early adulthood and mortality by middle age: cohort study of 1 million Swedish men. Epidemiology. 2009;20(1):100–9.PubMedCrossRef Batty GD, Wennerstad KM, Smith GD, et al. IQ in early adulthood and mortality by middle age: cohort study of 1 million Swedish men. Epidemiology. 2009;20(1):100–9.PubMedCrossRef
8.
go back to reference Starr JM, Taylor MD, Hart CL, et al. Childhood mental ability and blood pressure at midlife: linking the Scottish Mental Survey 1932 and the Midspan studies. J Hypertens. 2004;22(5):893–7.PubMedCrossRef Starr JM, Taylor MD, Hart CL, et al. Childhood mental ability and blood pressure at midlife: linking the Scottish Mental Survey 1932 and the Midspan studies. J Hypertens. 2004;22(5):893–7.PubMedCrossRef
9.
go back to reference Hart CL, Taylor MD, Smith GD, et al. Childhood IQ and cardiovascular disease in adulthood: prospective observational study linking the Scottish Mental Survey 1932 and the Midspan studies. Soc Sci Med. 2004;59(10):2131–8.PubMedCrossRef Hart CL, Taylor MD, Smith GD, et al. Childhood IQ and cardiovascular disease in adulthood: prospective observational study linking the Scottish Mental Survey 1932 and the Midspan studies. Soc Sci Med. 2004;59(10):2131–8.PubMedCrossRef
10.
go back to reference Hart CL, Taylor MD, Davey Smith G, et al. Childhood IQ, social class, deprivation, and their relationships with mortality and morbidity risk in later life: prospective observational study linking the Scottish Mental Survey 1932 and the Midspan studies. Psychosom Med. 2003;65(5):877–83.PubMedCrossRef Hart CL, Taylor MD, Davey Smith G, et al. Childhood IQ, social class, deprivation, and their relationships with mortality and morbidity risk in later life: prospective observational study linking the Scottish Mental Survey 1932 and the Midspan studies. Psychosom Med. 2003;65(5):877–83.PubMedCrossRef
11.
go back to reference Batty GD, Deary IJ, Schoon I, Gale CR. Childhood mental ability in relation to cause-specific accidents in adulthood: the 1970 British Cohort Study. QJM. 2007;100(7):405–14.PubMedCrossRef Batty GD, Deary IJ, Schoon I, Gale CR. Childhood mental ability in relation to cause-specific accidents in adulthood: the 1970 British Cohort Study. QJM. 2007;100(7):405–14.PubMedCrossRef
12.
go back to reference Schmidt M, Johannesdottir SA, Lemeshow S, et al. Cognitive test scores in young men and subsequent risk of type 2 diabetes, cardiovascular morbidity, and death. Epidemiology. 2013;24(5):632–6.PubMedCrossRef Schmidt M, Johannesdottir SA, Lemeshow S, et al. Cognitive test scores in young men and subsequent risk of type 2 diabetes, cardiovascular morbidity, and death. Epidemiology. 2013;24(5):632–6.PubMedCrossRef
13.
go back to reference Yano Y, Bakris GL, Inokuchi T, et al. Association of cognitive dysfunction with cardiovascular disease events in elderly hypertensive patients. J Hypertens. 2014;32(2):423–31.PubMedCrossRef Yano Y, Bakris GL, Inokuchi T, et al. Association of cognitive dysfunction with cardiovascular disease events in elderly hypertensive patients. J Hypertens. 2014;32(2):423–31.PubMedCrossRef
14.
go back to reference O’Donnell M, Teo K, Gao P, et al. Cognitive impairment and risk of cardiovascular events and mortality. Eur Heart J. 2012;33(14):1777–86.PubMedCrossRef O’Donnell M, Teo K, Gao P, et al. Cognitive impairment and risk of cardiovascular events and mortality. Eur Heart J. 2012;33(14):1777–86.PubMedCrossRef
15.
go back to reference Twig G, Gluzman I, Tirosh A, et al. Cognitive function and the risk for diabetes among young men. Diabetes Care. 2014;37(11):2982–8.PubMedCrossRef Twig G, Gluzman I, Tirosh A, et al. Cognitive function and the risk for diabetes among young men. Diabetes Care. 2014;37(11):2982–8.PubMedCrossRef
16.
go back to reference Twig G, Tirosh A, Leiba A, et al. BMI at age 17 years and diabetes mortality in midlife: a nationwide cohort of 2.3 million adolescents. Diabetes Care. 2016;39(11):1996.PubMedCrossRef Twig G, Tirosh A, Leiba A, et al. BMI at age 17 years and diabetes mortality in midlife: a nationwide cohort of 2.3 million adolescents. Diabetes Care. 2016;39(11):1996.PubMedCrossRef
17.
go back to reference Twig G, Yaniv G, Levine H, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):2430–40.PubMedCrossRef Twig G, Yaniv G, Levine H, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):2430–40.PubMedCrossRef
18.
go back to reference Davidson M, Reichenberg A, Rabinowitz J, Weiser M, Kaplan Z, Mark M. Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry. 1999;156(9):1328–35.PubMed Davidson M, Reichenberg A, Rabinowitz J, Weiser M, Kaplan Z, Mark M. Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry. 1999;156(9):1328–35.PubMed
19.
go back to reference Reichenberg A, Weiser M, Rapp MA, et al. Premorbid intra-individual variability in intellectual performance and risk for schizophrenia: a population-based study. Schizophr Res. 2006;85(1–3):49–57.PubMedCrossRef Reichenberg A, Weiser M, Rapp MA, et al. Premorbid intra-individual variability in intellectual performance and risk for schizophrenia: a population-based study. Schizophr Res. 2006;85(1–3):49–57.PubMedCrossRef
20.
go back to reference Lezak M. Neuropshychological assessment. Oxford: Oxford Press; 2004. Lezak M. Neuropshychological assessment. Oxford: Oxford Press; 2004.
21.
go back to reference Gal R. The selection, classification and placement process, in a portrait of the Israeli soldier. Westport: Greenwood Pres; 1986. Gal R. The selection, classification and placement process, in a portrait of the Israeli soldier. Westport: Greenwood Pres; 1986.
23.
go back to reference Furer A, Afek A, Orr O, et al. Sex-specific associations between adolescent categories of BMI with cardiovascular and non-cardiovascular mortality in midlife. Cardiovasc Diabetol. 2018;17(1):80.PubMedPubMedCentralCrossRef Furer A, Afek A, Orr O, et al. Sex-specific associations between adolescent categories of BMI with cardiovascular and non-cardiovascular mortality in midlife. Cardiovasc Diabetol. 2018;17(1):80.PubMedPubMedCentralCrossRef
24.
go back to reference Twig G, Geva N, Levine H, et al. Body mass index and infectious disease mortality in midlife in a cohort of 2.3 million adolescents. Int J Obesity. 2018;42(4):801–7.CrossRef Twig G, Geva N, Levine H, et al. Body mass index and infectious disease mortality in midlife in a cohort of 2.3 million adolescents. Int J Obesity. 2018;42(4):801–7.CrossRef
25.
go back to reference Statistics ICBO. Characterization and classification of local authorities by the socio-economic level of the population. Jerusalem: Israel Central Bureau of Statistics; 2006. Statistics ICBO. Characterization and classification of local authorities by the socio-economic level of the population. Jerusalem: Israel Central Bureau of Statistics; 2006.
26.
go back to reference Twig G, Afek A, Shamiss A, et al. Adolescence BMI and trends in adulthood mortality: a study of 2.16 million adolescents. J Clin Endocrinol Metab. 2014;99(6):2095–103.PubMedCrossRef Twig G, Afek A, Shamiss A, et al. Adolescence BMI and trends in adulthood mortality: a study of 2.16 million adolescents. J Clin Endocrinol Metab. 2014;99(6):2095–103.PubMedCrossRef
27.
go back to reference Twig G, Ben-Ami Shor D, Furer A, et al. Adolescent body mass index and cardiovascular disease-specific mortality by midlife. J Clin Endocrinol Metab. 2017;102(8):3011–20.PubMedCrossRef Twig G, Ben-Ami Shor D, Furer A, et al. Adolescent body mass index and cardiovascular disease-specific mortality by midlife. J Clin Endocrinol Metab. 2017;102(8):3011–20.PubMedCrossRef
28.
go back to reference Jason P, Fine RJG. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;1999(94):496–509. Jason P, Fine RJG. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;1999(94):496–509.
29.
go back to reference Twig G, Geva N, Levine H, et al. Body mass index and infectious disease mortality in midlife in a cohort of 2.3 million adolescents. Int J Obesity. 2017;42:801–7.CrossRef Twig G, Geva N, Levine H, et al. Body mass index and infectious disease mortality in midlife in a cohort of 2.3 million adolescents. Int J Obesity. 2017;42:801–7.CrossRef
30.
go back to reference Twig G, Vivante A, Bader T, et al. Body mass index and kidney disease-related mortality in midlife: a nationwide cohort of 2.3 million adolescents. Obesity. 2018;26(4):776–81.PubMedCrossRef Twig G, Vivante A, Bader T, et al. Body mass index and kidney disease-related mortality in midlife: a nationwide cohort of 2.3 million adolescents. Obesity. 2018;26(4):776–81.PubMedCrossRef
31.
go back to reference de Galan BE, Zoungas S, Chalmers J, et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia. 2009;52(11):2328–36.PubMedCrossRef de Galan BE, Zoungas S, Chalmers J, et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia. 2009;52(11):2328–36.PubMedCrossRef
32.
go back to reference Batty GD, Deary IJ, Zaninotto P. Association of cognitive function with cause-specific mortality in middle and older age: follow-up of participants in the english longitudinal study of ageing. Am J Epidemiol. 2016;183(3):183–90.PubMedPubMedCentralCrossRef Batty GD, Deary IJ, Zaninotto P. Association of cognitive function with cause-specific mortality in middle and older age: follow-up of participants in the english longitudinal study of ageing. Am J Epidemiol. 2016;183(3):183–90.PubMedPubMedCentralCrossRef
33.
go back to reference Cukierman-Yaffe T, Kasher-Meron M, Fruchter E, et al. Cognitive performance at late adolescence and the risk for impaired fasting glucose among young adults. J Clin Endocrinol Metab. 2015;100(12):4409–16.PubMedCrossRef Cukierman-Yaffe T, Kasher-Meron M, Fruchter E, et al. Cognitive performance at late adolescence and the risk for impaired fasting glucose among young adults. J Clin Endocrinol Metab. 2015;100(12):4409–16.PubMedCrossRef
34.
go back to reference Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol. 2006;16(2):91–104.PubMedCrossRef Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol. 2006;16(2):91–104.PubMedCrossRef
35.
go back to reference Galobardes B, Lynch JW, Smith GD. Is the association between childhood socioeconomic circumstances and cause-specific mortality established? Update of a systematic review. J Epidemiol Community Health. 2008;62(5):387–90.PubMedCrossRef Galobardes B, Lynch JW, Smith GD. Is the association between childhood socioeconomic circumstances and cause-specific mortality established? Update of a systematic review. J Epidemiol Community Health. 2008;62(5):387–90.PubMedCrossRef
36.
go back to reference Galobardes B, Lynch JW, Davey Smith G. Childhood socioeconomic circumstances and cause-specific mortality in adulthood: systematic review and interpretation. Epidemiol Rev. 2004;26:7–21.PubMedCrossRef Galobardes B, Lynch JW, Davey Smith G. Childhood socioeconomic circumstances and cause-specific mortality in adulthood: systematic review and interpretation. Epidemiol Rev. 2004;26:7–21.PubMedCrossRef
37.
go back to reference Feinstein L, Bynner J. The importance of cognitive development in middle childhood for adulthood socioeconomic status, mental health, and problem behavior. Child Dev. 2004;75(5):1329–39.PubMedCrossRef Feinstein L, Bynner J. The importance of cognitive development in middle childhood for adulthood socioeconomic status, mental health, and problem behavior. Child Dev. 2004;75(5):1329–39.PubMedCrossRef
38.
go back to reference Jefferis BJ, Power C, Graham H, Manor O. Effects of childhood socioeconomic circumstances on persistent smoking. Am J Public Health. 2004;94(2):279–85.PubMedPubMedCentralCrossRef Jefferis BJ, Power C, Graham H, Manor O. Effects of childhood socioeconomic circumstances on persistent smoking. Am J Public Health. 2004;94(2):279–85.PubMedPubMedCentralCrossRef
39.
go back to reference Calkins K, Devaskar SU. Fetal origins of adult disease. Curr Prob Pediatric Adolesc Health Care. 2011;41(6):158–76.CrossRef Calkins K, Devaskar SU. Fetal origins of adult disease. Curr Prob Pediatric Adolesc Health Care. 2011;41(6):158–76.CrossRef
40.
go back to reference Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81.PubMedCrossRef Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81.PubMedCrossRef
41.
go back to reference Boyko EJ. Proportion of type 2 diabetes cases resulting from impaired fetal growth. Diabetes Care. 2000;23(9):1260–4.PubMedCrossRef Boyko EJ. Proportion of type 2 diabetes cases resulting from impaired fetal growth. Diabetes Care. 2000;23(9):1260–4.PubMedCrossRef
42.
go back to reference Nyaradi A, Li J, Hickling S, Foster J, Oddy WH. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front Hum Neurosci. 2013;7:97.PubMedPubMedCentralCrossRef Nyaradi A, Li J, Hickling S, Foster J, Oddy WH. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front Hum Neurosci. 2013;7:97.PubMedPubMedCentralCrossRef
43.
go back to reference Grantham-McGregor S, Cheung YB, Cueto S, et al. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369(9555):60–70.PubMedPubMedCentralCrossRef Grantham-McGregor S, Cheung YB, Cueto S, et al. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369(9555):60–70.PubMedPubMedCentralCrossRef
44.
go back to reference Alaimo K, Olson CM, Frongillo EA Jr. Food insufficiency and American school-aged children’s cognitive, academic, and psychosocial development. Pediatrics. 2001;108(1):44–53.PubMed Alaimo K, Olson CM, Frongillo EA Jr. Food insufficiency and American school-aged children’s cognitive, academic, and psychosocial development. Pediatrics. 2001;108(1):44–53.PubMed
45.
go back to reference DeBoer MD, Lima AA, Oria RB, et al. Early childhood growth failure and the developmental origins of adult disease: do enteric infections and malnutrition increase risk for the metabolic syndrome? Nutr Rev. 2012;70(11):642–53.PubMedCrossRef DeBoer MD, Lima AA, Oria RB, et al. Early childhood growth failure and the developmental origins of adult disease: do enteric infections and malnutrition increase risk for the metabolic syndrome? Nutr Rev. 2012;70(11):642–53.PubMedCrossRef
46.
go back to reference Schwinger C, Fadnes LT, Shrestha SK, et al. Predicting undernutrition at age 2 years with early attained weight and length compared with weight and length velocity. J Pediatr. 2017;182(127–32):e1. Schwinger C, Fadnes LT, Shrestha SK, et al. Predicting undernutrition at age 2 years with early attained weight and length compared with weight and length velocity. J Pediatr. 2017;182(127–32):e1.
47.
go back to reference Lucove JC, Kaufman JS, James SA. Association between adult and childhood socioeconomic status and prevalence of the metabolic syndrome in African Americans: the pitt county study. Am J Public Health. 2007;97(2):234–6.PubMedPubMedCentralCrossRef Lucove JC, Kaufman JS, James SA. Association between adult and childhood socioeconomic status and prevalence of the metabolic syndrome in African Americans: the pitt county study. Am J Public Health. 2007;97(2):234–6.PubMedPubMedCentralCrossRef
48.
go back to reference Gottfredson LS. Intelligence: is it the epidemiologists’ elusive “fundamental cause” of social class inequalities in health? J Pers Soc Psychol. 2004;86(1):174–99.PubMedCrossRef Gottfredson LS. Intelligence: is it the epidemiologists’ elusive “fundamental cause” of social class inequalities in health? J Pers Soc Psychol. 2004;86(1):174–99.PubMedCrossRef
49.
go back to reference Deary IJ, Gale CR, Stewart MC, et al. Intelligence and persisting with medication for two years: analysis in a randomised controlled trial. Intelligence. 2009;37(6):607–12.PubMedPubMedCentralCrossRef Deary IJ, Gale CR, Stewart MC, et al. Intelligence and persisting with medication for two years: analysis in a randomised controlled trial. Intelligence. 2009;37(6):607–12.PubMedPubMedCentralCrossRef
50.
go back to reference Patel R, Lawlor DA, Ebrahim S, British Women’s H, Health Study C. Socio-economic position and the use of preventive health care in older British women: a cross-sectional study using data from the British Women’s Heart and Health Study cohort. Fam Pract. 2007;24(1):7–10.PubMedCrossRef Patel R, Lawlor DA, Ebrahim S, British Women’s H, Health Study C. Socio-economic position and the use of preventive health care in older British women: a cross-sectional study using data from the British Women’s Heart and Health Study cohort. Fam Pract. 2007;24(1):7–10.PubMedCrossRef
51.
go back to reference Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56(5):1376–81.PubMedCrossRef Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56(5):1376–81.PubMedCrossRef
52.
go back to reference Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.PubMedPubMedCentralCrossRef Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.PubMedPubMedCentralCrossRef
53.
go back to reference Lane RF, Raines SM, Steele JW, et al. Diabetes-associated SorCS1 regulates Alzheimer’s amyloid-beta metabolism: evidence for involvement of SorL1 and the retromer complex. J Neurosci. 2010;30(39):13110–5.PubMedPubMedCentralCrossRef Lane RF, Raines SM, Steele JW, et al. Diabetes-associated SorCS1 regulates Alzheimer’s amyloid-beta metabolism: evidence for involvement of SorL1 and the retromer complex. J Neurosci. 2010;30(39):13110–5.PubMedPubMedCentralCrossRef
54.
go back to reference Craft S, Cholerton B, Baker LD. Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis. 2013;33(Suppl 1):S263–75.PubMed Craft S, Cholerton B, Baker LD. Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis. 2013;33(Suppl 1):S263–75.PubMed
55.
go back to reference Geerlings MI, Brickman AM, Schupf N, et al. Depressive symptoms, antidepressant use, and brain volumes on MRI in a population-based cohort of old persons without dementia. J Alzheimers Dis. 2012;30(1):75–82.PubMedPubMedCentralCrossRef Geerlings MI, Brickman AM, Schupf N, et al. Depressive symptoms, antidepressant use, and brain volumes on MRI in a population-based cohort of old persons without dementia. J Alzheimers Dis. 2012;30(1):75–82.PubMedPubMedCentralCrossRef
56.
go back to reference Schioth HB, Craft S, Brooks SJ, Frey WH 2nd, Benedict C. Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol. 2012;46(1):4–10.PubMedCrossRef Schioth HB, Craft S, Brooks SJ, Frey WH 2nd, Benedict C. Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol. 2012;46(1):4–10.PubMedCrossRef
Metadata
Title
Cognitive function in adolescence and the risk for premature diabetes and cardiovascular mortality in adulthood
Authors
Gilad Twig
Amir Tirosh
Estela Derazne
Ziona Haklai
Nehama Goldberger
Arnon Afek
Hertzel C. Gerstein
Jeremy D. Kark
Tali Cukierman-Yaffe
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2018
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-018-0798-5

Other articles of this Issue 1/2018

Cardiovascular Diabetology 1/2018 Go to the issue