Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2018

Open Access 01-12-2018 | Original investigation

Associations between epicardial adipose tissue, subclinical atherosclerosis and high-density lipoprotein composition in type 1 diabetes

Authors: Cristina Colom, David Viladés, Montserrat Pérez-Cuellar, Rubén Leta, Andrea Rivas-Urbina, Gemma Carreras, Jordi Ordóñez-Llanos, Antonio Pérez, Jose Luis Sánchez-Quesada

Published in: Cardiovascular Diabetology | Issue 1/2018

Login to get access

Abstract

Background

The pathophysiology of cardiovascular complications in people with type 1 diabetes (T1DM) remains unclear. An increase in epicardial adipose tissue (EAT) and alterations in the composition of high-density lipoprotein (HDL) are associated with coronary artery disease, but information on its relationship in T1DM is very limited. Our aim was to determine the association between EAT volume, subclinical atherosclerosis, and HDL composition in type 1 diabetes.

Methods

Seventy-two long-term patients with T1DM without clinical atherosclerosis were analyzed. EAT volume and subclinical atherosclerosis were measured using cardiac computed tomography angiography. EAT was adjusted according to body surface to obtain an EAT index (iEAT). HDL composition was determined.

Results

The mean iEAT was 40.47 ± 22.18 cc/m2. The bivariate analysis showed positive associations of the iEAT with gender, age, hypertension, dyslipidemia, smoking, body mass index, waist circumference, insulin dose, and triglyceride (P < 0.05). The iEAT correlated positively with small HDL, increased content of apolipoprotein (apo)A-II and apoC-III, and decreased content of apoE and free cholesterol. Multiple linear regression showed that age, apoA-II content in HDL, and waist circumference were independently associated with the iEAT. Fifty percent of the patients presented subclinical atherosclerotic lesions. These patients had a higher iEAT, and their HDL contained less cholesterol and more apoA-II and lipoprotein-associated phospholipase A2 than patients without subclinical atherosclerosis.

Conclusion

Alterations in the composition of HDL in TIDM are associated with increased iEAT and the presence of subclinical atherosclerosis. We propose that these abnormalities of HDL composition could be useful to identify T1DM patients at highest cardiovascular risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang C-P, Hsu H-L, Hung W-C, Yu T-H, Chen Y-H, Chiu C-A, et al. Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol (Oxf). 2009;70:876–82.CrossRef Wang C-P, Hsu H-L, Hung W-C, Yu T-H, Chen Y-H, Chiu C-A, et al. Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol (Oxf). 2009;70:876–82.CrossRef
2.
go back to reference Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12:31–42.CrossRefPubMed Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12:31–42.CrossRefPubMed
3.
4.
go back to reference Kim S-H, Chung J-H, Kwon B-J, Song S-W, Choi W-S. The associations of epicardial adipose tissue with coronary artery disease and coronary atherosclerosis. Int Heart J. 2014;55:197–203.CrossRefPubMed Kim S-H, Chung J-H, Kwon B-J, Song S-W, Choi W-S. The associations of epicardial adipose tissue with coronary artery disease and coronary atherosclerosis. Int Heart J. 2014;55:197–203.CrossRefPubMed
5.
go back to reference Vergès B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis. 2010;211:353–60.CrossRefPubMed Vergès B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis. 2010;211:353–60.CrossRefPubMed
6.
go back to reference Farmer JA. Diabetic dyslipidemia and atherosclerosis: evidence from clinical trials. Curr Diab Rep. 2008;8:71–7.CrossRefPubMed Farmer JA. Diabetic dyslipidemia and atherosclerosis: evidence from clinical trials. Curr Diab Rep. 2008;8:71–7.CrossRefPubMed
7.
go back to reference Namiri-Kalantari R, Gao F, Chattopadhyay A, Wheeler AA, Navab KD, Farias-Eisner R, et al. The dual nature of HDL: anti-Inflammatory and pro-Inflammatory. BioFact Oxf Engl. 2015;41:153–9. Namiri-Kalantari R, Gao F, Chattopadhyay A, Wheeler AA, Navab KD, Farias-Eisner R, et al. The dual nature of HDL: anti-Inflammatory and pro-Inflammatory. BioFact Oxf Engl. 2015;41:153–9.
8.
go back to reference Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol. 2015;224:3–51.CrossRefPubMed Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol. 2015;224:3–51.CrossRefPubMed
9.
go back to reference Lind M, Svensson A-M, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371:1972–82.CrossRefPubMed Lind M, Svensson A-M, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371:1972–82.CrossRefPubMed
10.
go back to reference Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95:513–21.CrossRefPubMed Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95:513–21.CrossRefPubMed
11.
go back to reference Darabian S, Backlund J-YC, Cleary PA, Sheidaee N, Bebu I, Lachin JM, et al. Significance of Epicardial and Intrathoracic Adipose Tissue Volume among Type 1 Diabetes Patients in the DCCT/EDIC. A pilot study. PLoS ONE. 2016;11:e0159958.CrossRefPubMedPubMedCentral Darabian S, Backlund J-YC, Cleary PA, Sheidaee N, Bebu I, Lachin JM, et al. Significance of Epicardial and Intrathoracic Adipose Tissue Volume among Type 1 Diabetes Patients in the DCCT/EDIC. A pilot study. PLoS ONE. 2016;11:e0159958.CrossRefPubMedPubMedCentral
12.
go back to reference Nichols JH, Samy B, Nasir K, Fox CS, Schulze PC, Bamberg F, et al. Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr. 2008;2:288–95.CrossRefPubMedPubMedCentral Nichols JH, Samy B, Nasir K, Fox CS, Schulze PC, Bamberg F, et al. Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr. 2008;2:288–95.CrossRefPubMedPubMedCentral
13.
go back to reference Pérez A, Wägner AM, Carreras G, Giménez G, Sánchez-Quesada JL, Rigla M, et al. Prevalence and phenotypic distribution of dyslipidemia in type 1 diabetes mellitus: effect of glycemic control. Arch Intern Med. 2000;160:2756–62.CrossRefPubMed Pérez A, Wägner AM, Carreras G, Giménez G, Sánchez-Quesada JL, Rigla M, et al. Prevalence and phenotypic distribution of dyslipidemia in type 1 diabetes mellitus: effect of glycemic control. Arch Intern Med. 2000;160:2756–62.CrossRefPubMed
14.
go back to reference Ganjali S, Dallinga-Thie GM, Simental-Mendía LE, Banach M, Pirro M, Sahebkar A. HDL functionality in type 1 diabetes. Atherosclerosis. 2017;267:99–109.CrossRefPubMed Ganjali S, Dallinga-Thie GM, Simental-Mendía LE, Banach M, Pirro M, Sahebkar A. HDL functionality in type 1 diabetes. Atherosclerosis. 2017;267:99–109.CrossRefPubMed
15.
go back to reference Heier M, Borja MS, Brunborg C, Seljeflot I, Margeirsdottir HD, Hanssen KF, et al. Reduced HDL function in children and young adults with type 1 diabetes. Cardiovasc Diabetol. 2017;16(1):85.CrossRefPubMedPubMedCentral Heier M, Borja MS, Brunborg C, Seljeflot I, Margeirsdottir HD, Hanssen KF, et al. Reduced HDL function in children and young adults with type 1 diabetes. Cardiovasc Diabetol. 2017;16(1):85.CrossRefPubMedPubMedCentral
16.
go back to reference Zimmet P, Alberti KG, Serrano Ríos M. A new international diabetes federation worldwide definition of the metabolic syndrome: the rationale and the results. Rev Esp Cardiol. 2005;58:1371–6.CrossRefPubMed Zimmet P, Alberti KG, Serrano Ríos M. A new international diabetes federation worldwide definition of the metabolic syndrome: the rationale and the results. Rev Esp Cardiol. 2005;58:1371–6.CrossRefPubMed
17.
go back to reference Budoff MJ, Cohen MC, Garcia MJ, Hodgson JM, Hundley WG, Lima JAC, et al. ACCF/AHA clinical competence statement on cardiac imaging with computed tomography and magnetic resonance. Circulation. 2005;112:598–617.CrossRefPubMed Budoff MJ, Cohen MC, Garcia MJ, Hodgson JM, Hundley WG, Lima JAC, et al. ACCF/AHA clinical competence statement on cardiac imaging with computed tomography and magnetic resonance. Circulation. 2005;112:598–617.CrossRefPubMed
18.
go back to reference Sánchez-Quesada JL, Benítez S, Otal C, Franco M, Blanco-Vaca F, Ordóñez-Llanos J. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. J Lipid Res. 2002;43:699–705.PubMed Sánchez-Quesada JL, Benítez S, Otal C, Franco M, Blanco-Vaca F, Ordóñez-Llanos J. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. J Lipid Res. 2002;43:699–705.PubMed
19.
go back to reference Ribas V, Sánchez-Quesada JL, Antón R, Camacho M, Julve J, Escolà-Gil JC, et al. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res. 2004;95:789–97.CrossRefPubMed Ribas V, Sánchez-Quesada JL, Antón R, Camacho M, Julve J, Escolà-Gil JC, et al. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res. 2004;95:789–97.CrossRefPubMed
20.
go back to reference Benítez S, Sánchez-Quesada JL, Ribas V, Jorba O, Blanco-Vaca F, González-Sastre F, et al. Platelet-activating factor acetylhydrolase is mainly associated with electronegative low-density lipoprotein subfraction. Circulation. 2003;108:92–6.CrossRefPubMed Benítez S, Sánchez-Quesada JL, Ribas V, Jorba O, Blanco-Vaca F, González-Sastre F, et al. Platelet-activating factor acetylhydrolase is mainly associated with electronegative low-density lipoprotein subfraction. Circulation. 2003;108:92–6.CrossRefPubMed
21.
go back to reference Sánchez-Quesada JL, Vinagre I, De Juan-Franco E, Sánchez-Hernández J, Bonet-Marques R, Blanco-Vaca F, et al. Impact of the LDL subfraction phenotype on Lp-PLA2 distribution, LDL modification and HDL composition in type 2 diabetes. Cardiovasc Diabetol. 2013;12:112.CrossRefPubMedPubMedCentral Sánchez-Quesada JL, Vinagre I, De Juan-Franco E, Sánchez-Hernández J, Bonet-Marques R, Blanco-Vaca F, et al. Impact of the LDL subfraction phenotype on Lp-PLA2 distribution, LDL modification and HDL composition in type 2 diabetes. Cardiovasc Diabetol. 2013;12:112.CrossRefPubMedPubMedCentral
22.
go back to reference González N, Moreno-Villegas Z, González-Bris A, Egido J, Lorenzo Ó. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol. 2017;16:44.CrossRefPubMedPubMedCentral González N, Moreno-Villegas Z, González-Bris A, Egido J, Lorenzo Ó. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol. 2017;16:44.CrossRefPubMedPubMedCentral
23.
go back to reference Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:781–6.CrossRefPubMed Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:781–6.CrossRefPubMed
24.
go back to reference Dey D, Wong ND, Tamarappoo B, Nakazato R, Gransar H, Cheng VY, et al. Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and metabolic syndrome. Atherosclerosis. 2010;209:136–41.CrossRefPubMed Dey D, Wong ND, Tamarappoo B, Nakazato R, Gransar H, Cheng VY, et al. Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and metabolic syndrome. Atherosclerosis. 2010;209:136–41.CrossRefPubMed
25.
go back to reference Versteylen MO, Takx RAP, Joosen IAPG, Nelemans PJ, Das M, Crijns HJGM, et al. Epicardial adipose tissue volume as a predictor for coronary artery disease in diabetic, impaired fasting glucose, and non-diabetic patients presenting with chest pain. Eur Heart J Cardiovasc Imaging. 2012;13:517–23.CrossRefPubMed Versteylen MO, Takx RAP, Joosen IAPG, Nelemans PJ, Das M, Crijns HJGM, et al. Epicardial adipose tissue volume as a predictor for coronary artery disease in diabetic, impaired fasting glucose, and non-diabetic patients presenting with chest pain. Eur Heart J Cardiovasc Imaging. 2012;13:517–23.CrossRefPubMed
26.
go back to reference Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012;158:26–32.CrossRefPubMed Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012;158:26–32.CrossRefPubMed
27.
go back to reference Monti M, Monti A, Murdolo G, Di Renzi P, Pirro MR, Borgognoni F, et al. Correlation between epicardial fat and cigarette smoking: CT imaging in patients with metabolic syndrome. Scand Cardiovasc J. 2014;48:317–22.CrossRefPubMed Monti M, Monti A, Murdolo G, Di Renzi P, Pirro MR, Borgognoni F, et al. Correlation between epicardial fat and cigarette smoking: CT imaging in patients with metabolic syndrome. Scand Cardiovasc J. 2014;48:317–22.CrossRefPubMed
28.
go back to reference Cho DH, Joo HJ, Kim MN, Lim DS, Shim WJ, Park SM. Association between epicardial adipose tissue, high-sensitivity C-reactive protein and myocardial dysfunction in middle-aged men with suspected metabolic syndrome. Cardiovasc Diabetol. 2018;17:95.CrossRefPubMedPubMedCentral Cho DH, Joo HJ, Kim MN, Lim DS, Shim WJ, Park SM. Association between epicardial adipose tissue, high-sensitivity C-reactive protein and myocardial dysfunction in middle-aged men with suspected metabolic syndrome. Cardiovasc Diabetol. 2018;17:95.CrossRefPubMedPubMedCentral
29.
go back to reference Momesso DP, Bussade I, Epifanio MA, Schettino CDS, Russo LAT, Kupfer R. Increased epicardial adipose tissue in type 1 diabetes is associated with central obesity and metabolic syndrome. Diabetes Res Clin Pract. 2011;91:47–53.CrossRefPubMed Momesso DP, Bussade I, Epifanio MA, Schettino CDS, Russo LAT, Kupfer R. Increased epicardial adipose tissue in type 1 diabetes is associated with central obesity and metabolic syndrome. Diabetes Res Clin Pract. 2011;91:47–53.CrossRefPubMed
30.
go back to reference Yazıcı D, Özben B, Yavuz D, Deyneli O, Aydın H, Tarcin Ö, et al. Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine. 2011;40:250–5.CrossRefPubMed Yazıcı D, Özben B, Yavuz D, Deyneli O, Aydın H, Tarcin Ö, et al. Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine. 2011;40:250–5.CrossRefPubMed
31.
go back to reference Aslan AN, Keleş T, Ayhan H, Kasapkara HA, Akçay M, Durmaz T, et al. The relationship between epicardial fat thickness and endothelial dysfunction in type I diabetes mellitus. Echocardiography. 2015;32:1745–53.CrossRefPubMed Aslan AN, Keleş T, Ayhan H, Kasapkara HA, Akçay M, Durmaz T, et al. The relationship between epicardial fat thickness and endothelial dysfunction in type I diabetes mellitus. Echocardiography. 2015;32:1745–53.CrossRefPubMed
32.
go back to reference Shmilovich H, Dey D, Cheng VY, Rajani R, Nakazato R, Otaki Y, et al. Threshold for the upper normal limit of indexed epicardial fat volume: derivation in a healthy population and validation in an outcome-based study. Am J Cardiol. 2011;108:1680–5.CrossRefPubMedPubMedCentral Shmilovich H, Dey D, Cheng VY, Rajani R, Nakazato R, Otaki Y, et al. Threshold for the upper normal limit of indexed epicardial fat volume: derivation in a healthy population and validation in an outcome-based study. Am J Cardiol. 2011;108:1680–5.CrossRefPubMedPubMedCentral
33.
go back to reference Miller M. Apolipoprotein C-III: the small protein with sizeable vascular risk. Arterioscler Thromb Vasc Biol. 2017;37:1013–4.CrossRefPubMed Miller M. Apolipoprotein C-III: the small protein with sizeable vascular risk. Arterioscler Thromb Vasc Biol. 2017;37:1013–4.CrossRefPubMed
34.
go back to reference Jensen MK, Aroner SA, Mukamal KJ, Furtado JD, Post WS, Tsai MY, et al. High-density lipoprotein subspecies defined by presence of apolipoprotein C-III and incident coronary heart disease in four cohorts. Circulation. 2018;137:1364–73.CrossRefPubMed Jensen MK, Aroner SA, Mukamal KJ, Furtado JD, Post WS, Tsai MY, et al. High-density lipoprotein subspecies defined by presence of apolipoprotein C-III and incident coronary heart disease in four cohorts. Circulation. 2018;137:1364–73.CrossRefPubMed
35.
go back to reference Xiong X, Liu H, Hua L, Zhao H, Wang D, Li Y. The association of HDL-apoCIII with coronary heart disease and the effect of statin treatment on it. Lipids Health Dis. 2015;14:127.CrossRefPubMedPubMedCentral Xiong X, Liu H, Hua L, Zhao H, Wang D, Li Y. The association of HDL-apoCIII with coronary heart disease and the effect of statin treatment on it. Lipids Health Dis. 2015;14:127.CrossRefPubMedPubMedCentral
36.
go back to reference Riwanto M, Rohrer L, Roschitzki B, Besler C, Mocharla P, Mueller M, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation. 2013;127:891–904.CrossRefPubMed Riwanto M, Rohrer L, Roschitzki B, Besler C, Mocharla P, Mueller M, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation. 2013;127:891–904.CrossRefPubMed
37.
go back to reference Sacks FM, Alaupovic P, Moye LA, Cole TG, Sussex B, Stampfer MJ, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation. 2000;102:1886–92.CrossRefPubMed Sacks FM, Alaupovic P, Moye LA, Cole TG, Sussex B, Stampfer MJ, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation. 2000;102:1886–92.CrossRefPubMed
38.
go back to reference Weng W, Breslow JL. Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility. Proc Natl Acad Sci USA. 1996;93:14788–94.CrossRefPubMed Weng W, Breslow JL. Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility. Proc Natl Acad Sci USA. 1996;93:14788–94.CrossRefPubMed
39.
go back to reference Julve J, Escolà-Gil JC, Marzal-Casacuberta A, Ordóñez-Llanos J, González-Sastre F, Blanco-Vaca F. Increased production of very-low-density lipoproteins in transgenic mice overexpressing human apolipoprotein A-II and fed with a high-fat diet. Biochim Biophys Acta. 2000;1488:233–44.CrossRefPubMed Julve J, Escolà-Gil JC, Marzal-Casacuberta A, Ordóñez-Llanos J, González-Sastre F, Blanco-Vaca F. Increased production of very-low-density lipoproteins in transgenic mice overexpressing human apolipoprotein A-II and fed with a high-fat diet. Biochim Biophys Acta. 2000;1488:233–44.CrossRefPubMed
40.
go back to reference van’t Hooft FM, Ruotolo G, Boquist S, de Faire U, Eggertsen G, Hamsten A. Human evidence that the apolipoprotein A-II gene is implicated in visceral fat accumulation and metabolism of triglyceride-rich lipoproteins. Circulation. 2001;104:1223–8.CrossRef van’t Hooft FM, Ruotolo G, Boquist S, de Faire U, Eggertsen G, Hamsten A. Human evidence that the apolipoprotein A-II gene is implicated in visceral fat accumulation and metabolism of triglyceride-rich lipoproteins. Circulation. 2001;104:1223–8.CrossRef
41.
go back to reference Perelas A, Safarika V, Vlachos IS, Tzanetakou I, Korou L-M, Konstantopoulos P, et al. Correlation between mesenteric fat thickness and serum apolipoproteins in patients with peripheral arterial occlusive disease. Lipids Health Dis. 2012;11:125.CrossRefPubMedPubMedCentral Perelas A, Safarika V, Vlachos IS, Tzanetakou I, Korou L-M, Konstantopoulos P, et al. Correlation between mesenteric fat thickness and serum apolipoproteins in patients with peripheral arterial occlusive disease. Lipids Health Dis. 2012;11:125.CrossRefPubMedPubMedCentral
42.
go back to reference Castellani LW, Goto AM, Lusis AJ. Studies with apolipoprotein A-II transgenic mice indicate a role for HDLs in adiposity and insulin resistance. Diabetes. 2001;50:643–51.CrossRefPubMed Castellani LW, Goto AM, Lusis AJ. Studies with apolipoprotein A-II transgenic mice indicate a role for HDLs in adiposity and insulin resistance. Diabetes. 2001;50:643–51.CrossRefPubMed
43.
go back to reference Miller RG, Costacou T, Orchard TJ. Lipoprotein-associated phospholipase A2, C-reactive protein, and coronary artery disease in individuals with type 1 diabetes and macroalbuminuria. Diab Vasc Dis Res. 2010;7:47–55.CrossRefPubMed Miller RG, Costacou T, Orchard TJ. Lipoprotein-associated phospholipase A2, C-reactive protein, and coronary artery disease in individuals with type 1 diabetes and macroalbuminuria. Diab Vasc Dis Res. 2010;7:47–55.CrossRefPubMed
44.
go back to reference Jarvie JL, Wang H, Kinney GL, Snell-Bergeon J, Hokanson JE, Eckel RH. Lipoprotein-associated phospholipase A2 distribution among lipoproteins differs in type 1 diabetes. J Clin Lipidol. 2016;10:577–86.CrossRefPubMed Jarvie JL, Wang H, Kinney GL, Snell-Bergeon J, Hokanson JE, Eckel RH. Lipoprotein-associated phospholipase A2 distribution among lipoproteins differs in type 1 diabetes. J Clin Lipidol. 2016;10:577–86.CrossRefPubMed
Metadata
Title
Associations between epicardial adipose tissue, subclinical atherosclerosis and high-density lipoprotein composition in type 1 diabetes
Authors
Cristina Colom
David Viladés
Montserrat Pérez-Cuellar
Rubén Leta
Andrea Rivas-Urbina
Gemma Carreras
Jordi Ordóñez-Llanos
Antonio Pérez
Jose Luis Sánchez-Quesada
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2018
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-018-0794-9

Other articles of this Issue 1/2018

Cardiovascular Diabetology 1/2018 Go to the issue