Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2018

Open Access 01-12-2018 | Original investigation

Liraglutide suppresses non-esterified free fatty acids and soluble vascular cell adhesion molecule-1 compared with metformin in patients with recent-onset type 2 diabetes

Authors: Xiao-min Chen, Wen-qiang Zhang, Yuan Tian, Li-fen Wang, Chan-chan Chen, Chuan-mei Qiu

Published in: Cardiovascular Diabetology | Issue 1/2018

Login to get access

Abstract

Background

It has been suggested that liraglutide could have an impact on glucose and lipid metabolism disorder and adhesion molecule activation, which may play important roles in the vascular damage of diabetes. In this study, we examined the effects of liraglutide versus metformin on non-esterified free fatty acids, beta-cell insulin secretion, and adhesion molecule levels in patients with recent-onset type 2 diabetes mellitus.

Methods

In this study, 60 patients newly diagnosed with type 2 diabetes mellitus (mean age 33.97 ± 5.67 years) were randomly assigned to receive once-daily subcutaneous liraglutide or oral metformin. Before the study and after the 8-week treatment period, a 75 g oral glucose tolerance test was performed. Plasma glucose, lipids and lipoprotein, plasma insulin, glycaemic and insulin responses, non-esterified free fatty acids (NEFA), and soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were evaluated.

Results

After 8 weeks, 120 min of NEFA (155 ± 125 vs 99 ± 73 µmol/L, P = 0.026) and the levels of sVCAM-1 (465 ± 136 vs 382 ± 131 ng/ml, P = 0.013) significantly decreased, while the early phase insulin secretion index (24.94 [7.78, 38.89] vs. 31.13 [17.67, 59.09], P = 0.031), fasting plasma insulin (104 [51, 123] vs 113 [54, 171] mIU/L, P = 0.015), 60 min plasma insulin (326 [165, 441] vs 471 [334, 717] mIU/L, P = 0.005), 120 min plasma insulin (401 [193, 560] vs 500 [367, 960] mIU/L, P = 0.047), and insulin area under the curve (AUCins) (648 [321, 742] vs 738 [451, 1118] mIU/L, P = 0.005) remarkably increased for patients in the liraglutide treatment group. The levels of sVCAM-1 dramatically decreased after 8 weeks of liraglutide treatment (503 ± 182 vs 382 ± 131 ng/ml, P = 0.046) compared to that of the metformin treatment group. At the same time, the differences before and after liraglutide treatment in 120 min of NEFA (− 32 [− 96, − 5] vs 5 [− 35, 38] µmol/L, P = 0.033) and AUCins (738 [451, 1118] vs 594 [357, 1216] mIU/L, P = 0.014) were remarkably enhanced compared to that of the metformin therapy. Nevertheless, there were no significant differences in fasting NEFA after liraglutide or metformin treatment. The reduction of 120 min NEFA (ΔNEFA) was positively correlated with the decrease of sVCAM-1 (ΔsVCAM-1) after 8 weeks of liraglutide treatment (r = 0.523, P = 0.003).

Conclusions

Our results demonstrate that liraglutide administration is more effective than metformin in reducing 120 min NEFA and suppressing sVCAM-1 levels for recent-onset type 2 diabetes mellitus. We suggest that this outcome may be because liraglutide is associated with potentiating insulin secretion capacity, inhibiting vascular inflammatory cytokines, and antagonizing atherosclerosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.CrossRefPubMedPubMedCentral Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.CrossRefPubMedPubMedCentral
2.
go back to reference Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993;16:434–44.CrossRefPubMed Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993;16:434–44.CrossRefPubMed
3.
go back to reference Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA. Lipid mediators of insulin resistance. Nutr Rev. 2007;65:S39–46.CrossRefPubMed Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA. Lipid mediators of insulin resistance. Nutr Rev. 2007;65:S39–46.CrossRefPubMed
5.
go back to reference Boden G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep. 2006;6:177–81.CrossRefPubMed Boden G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep. 2006;6:177–81.CrossRefPubMed
6.
go back to reference Wilding JP. The importance of free fatty acids in the development of type 2 diabetes. Diabet Med. 2007;24:934–45.CrossRefPubMed Wilding JP. The importance of free fatty acids in the development of type 2 diabetes. Diabet Med. 2007;24:934–45.CrossRefPubMed
7.
go back to reference Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116(4):1071–80.CrossRefPubMedPubMedCentral Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116(4):1071–80.CrossRefPubMedPubMedCentral
8.
go back to reference Zhou HG, Liu L, Zhang Y, Huang YY, Tao YH, Zhang S, et al. Glutathione prevents free fatty acids-induced oxidative stress and apoptosis in human brain vascular endothelial cells through Akt pathway. CNS Neurosci Ther. 2013;19(4):252–61.CrossRefPubMed Zhou HG, Liu L, Zhang Y, Huang YY, Tao YH, Zhang S, et al. Glutathione prevents free fatty acids-induced oxidative stress and apoptosis in human brain vascular endothelial cells through Akt pathway. CNS Neurosci Ther. 2013;19(4):252–61.CrossRefPubMed
9.
go back to reference Trujillo JM, Nuffer W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy. 2014;34(11):1174–86.CrossRefPubMed Trujillo JM, Nuffer W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy. 2014;34(11):1174–86.CrossRefPubMed
10.
go back to reference Retnakaran R, Kramer CK, Choi H, Swaminathan B, Zinman B. Liraglutide and the preservation of pancreatic β-cell function in early type 2 diabetes: the LIBRA trial. Diabetes Care. 2014;37(12):3270–8.CrossRefPubMed Retnakaran R, Kramer CK, Choi H, Swaminathan B, Zinman B. Liraglutide and the preservation of pancreatic β-cell function in early type 2 diabetes: the LIBRA trial. Diabetes Care. 2014;37(12):3270–8.CrossRefPubMed
11.
go back to reference Zheng J, Chen T, Zhu Y, Li HQ, Deng XL, Wang QH, Zhang JY, Chen LL. Liraglutide prevents fast weight gain and β-cell dysfunction in male catch-up growth rats. Exp Biol Med (Maywood). 2015;240(9):1165–76.CrossRefPubMedPubMedCentral Zheng J, Chen T, Zhu Y, Li HQ, Deng XL, Wang QH, Zhang JY, Chen LL. Liraglutide prevents fast weight gain and β-cell dysfunction in male catch-up growth rats. Exp Biol Med (Maywood). 2015;240(9):1165–76.CrossRefPubMedPubMedCentral
12.
go back to reference Masmiquel L, Leiter LA, Vidal J, Bain S, Petrie J, Franek E, et al. LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial. Cardiovasc Diabetol. 2016;15(1):29.CrossRefPubMedPubMedCentral Masmiquel L, Leiter LA, Vidal J, Bain S, Petrie J, Franek E, et al. LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial. Cardiovasc Diabetol. 2016;15(1):29.CrossRefPubMedPubMedCentral
13.
go back to reference Anagnostis P, Athyros VG, Adamidou F, Panagiotou A, Kita M, Karagiannis A, Mikhailidis DP. Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab. 2011;13(4):302–12.CrossRefPubMed Anagnostis P, Athyros VG, Adamidou F, Panagiotou A, Kita M, Karagiannis A, Mikhailidis DP. Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab. 2011;13(4):302–12.CrossRefPubMed
14.
go back to reference Bruen R, Curley S, Kajani S, Crean D, O’Reilly ME, Lucitt MB, Godson CG, McGillicuddy FC, Belton O. Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis. Cardiovasc Diabetol. 2017;16(1):143.CrossRefPubMedPubMedCentral Bruen R, Curley S, Kajani S, Crean D, O’Reilly ME, Lucitt MB, Godson CG, McGillicuddy FC, Belton O. Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis. Cardiovasc Diabetol. 2017;16(1):143.CrossRefPubMedPubMedCentral
15.
go back to reference Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2014;28(5):425–32.CrossRefPubMed Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2014;28(5):425–32.CrossRefPubMed
16.
go back to reference Hiramatsu T, Ozeki A, Ishikawa H, Furuta S. Long term effects of liraglutide in japanese patients with type 2 diabetes among the subgroups with different renal functions: results of 2-year prospective study. Drug Res (Stuttg). 2017;67(11):640–6.CrossRefPubMed Hiramatsu T, Ozeki A, Ishikawa H, Furuta S. Long term effects of liraglutide in japanese patients with type 2 diabetes among the subgroups with different renal functions: results of 2-year prospective study. Drug Res (Stuttg). 2017;67(11):640–6.CrossRefPubMed
17.
go back to reference Spadaro L, Alagona C, Palermo F, Piro S, Calanna S, Parrinello G, Purrello F, Rabuazzo AM. Early phase insulin secretion is increased in subjects with normal fasting glucose and metabolic syndrome: a premature feature of beta-cell dysfunction. Nutr Metab Cardiovasc Dis. 2011;21(3):206–12.CrossRefPubMed Spadaro L, Alagona C, Palermo F, Piro S, Calanna S, Parrinello G, Purrello F, Rabuazzo AM. Early phase insulin secretion is increased in subjects with normal fasting glucose and metabolic syndrome: a premature feature of beta-cell dysfunction. Nutr Metab Cardiovasc Dis. 2011;21(3):206–12.CrossRefPubMed
18.
go back to reference Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer X. The use of areas under curves in diabetes research. Diabetes Care. 1995;18(2):245–50.CrossRefPubMed Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer X. The use of areas under curves in diabetes research. Diabetes Care. 1995;18(2):245–50.CrossRefPubMed
19.
go back to reference Loirdighi N, Menard D, Levy E. Insulin decreases chylomicron production in human fetal small intestine. Biochim Biophys Acta. 1992;1175:100–6.CrossRefPubMed Loirdighi N, Menard D, Levy E. Insulin decreases chylomicron production in human fetal small intestine. Biochim Biophys Acta. 1992;1175:100–6.CrossRefPubMed
20.
go back to reference Meier JJ, Gethmann A, Gotze O, Gallwitz B, Holst JJ, Schmidt WE, Nauck MA. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of nonesterified fatty acids in humans. Diabetologia. 2006;49:452–8.CrossRefPubMed Meier JJ, Gethmann A, Gotze O, Gallwitz B, Holst JJ, Schmidt WE, Nauck MA. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of nonesterified fatty acids in humans. Diabetologia. 2006;49:452–8.CrossRefPubMed
21.
go back to reference Pavlic M, Xiao C, Szeto L, Patterson BW, Lewis GF. Insulin acutely inhibits intestinal lipoprotein secretion in humans in part by suppressing plasma free fatty acids. Diabetes. 2010;59:580–7.CrossRefPubMed Pavlic M, Xiao C, Szeto L, Patterson BW, Lewis GF. Insulin acutely inhibits intestinal lipoprotein secretion in humans in part by suppressing plasma free fatty acids. Diabetes. 2010;59:580–7.CrossRefPubMed
22.
go back to reference Hsieh J, Longuet C, Baker CL, Qin B, Federico LM, Drucker DJ, Adeli K. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia. 2010;53:552–61.CrossRefPubMed Hsieh J, Longuet C, Baker CL, Qin B, Federico LM, Drucker DJ, Adeli K. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia. 2010;53:552–61.CrossRefPubMed
23.
go back to reference Cianflone K, Paglialunga S, Roy C. Intestinally derived lipids: metabolic regulation and consequences–an overview. Atheroscler Suppl. 2008;9:63–8.CrossRefPubMed Cianflone K, Paglialunga S, Roy C. Intestinally derived lipids: metabolic regulation and consequences–an overview. Atheroscler Suppl. 2008;9:63–8.CrossRefPubMed
24.
go back to reference Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset of type 2 diabetes mellitus. Atherosclerosis. 2010;212:217–22.CrossRefPubMed Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset of type 2 diabetes mellitus. Atherosclerosis. 2010;212:217–22.CrossRefPubMed
25.
go back to reference Wang CS, McConathy WJ, Kloer HU, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest. 1985;75:384–90.CrossRefPubMedPubMedCentral Wang CS, McConathy WJ, Kloer HU, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest. 1985;75:384–90.CrossRefPubMedPubMedCentral
26.
go back to reference Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC. Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol. 1995;15:963–71.CrossRefPubMed Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC. Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol. 1995;15:963–71.CrossRefPubMed
27.
go back to reference Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia. 2003;46:1297–312.CrossRefPubMed Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia. 2003;46:1297–312.CrossRefPubMed
28.
go back to reference Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procopio J, Morgan D, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and nonmitochondrial ROS production and activity. J Physiol. 2007;583(1):9–24.CrossRefPubMedPubMedCentral Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procopio J, Morgan D, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and nonmitochondrial ROS production and activity. J Physiol. 2007;583(1):9–24.CrossRefPubMedPubMedCentral
29.
go back to reference Teng KT, Chang CY, Kanthimathi MS, Tan AT, Nesaretnam K. Effects of amount and type of dietary fats on postprandial lipemia and thrombogenic markers in individuals with metabolic syndrome. Atherosclerosis. 2015;242(1):281–7.CrossRefPubMed Teng KT, Chang CY, Kanthimathi MS, Tan AT, Nesaretnam K. Effects of amount and type of dietary fats on postprandial lipemia and thrombogenic markers in individuals with metabolic syndrome. Atherosclerosis. 2015;242(1):281–7.CrossRefPubMed
30.
go back to reference Steinberg HO, Baron AD. Vascular function, insulin resistance and fatty acids. Diabetologia. 2002;45(5):623–34.CrossRefPubMed Steinberg HO, Baron AD. Vascular function, insulin resistance and fatty acids. Diabetologia. 2002;45(5):623–34.CrossRefPubMed
31.
go back to reference Zonneveld R, Martinelli R, Shapiro NI, Kuijpers TW, Plotz FB, Carman CV. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit Care. 2014;18:204.CrossRefPubMedPubMedCentral Zonneveld R, Martinelli R, Shapiro NI, Kuijpers TW, Plotz FB, Carman CV. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit Care. 2014;18:204.CrossRefPubMedPubMedCentral
32.
go back to reference van Eupen MG, Schram MT, Colhoun HM, Hanssen NM, Niessen HW, Tarnow L, et al. The methylglyoxal-derived AGE tetrahydropyrimidine is increased in plasma of individuals with type 1 diabetes mellitus and in atherosclerotic lesions and is associated with sVCAM-1. Diabetologia. 2013;56(8):1845–55.CrossRefPubMed van Eupen MG, Schram MT, Colhoun HM, Hanssen NM, Niessen HW, Tarnow L, et al. The methylglyoxal-derived AGE tetrahydropyrimidine is increased in plasma of individuals with type 1 diabetes mellitus and in atherosclerotic lesions and is associated with sVCAM-1. Diabetologia. 2013;56(8):1845–55.CrossRefPubMed
33.
go back to reference Göbl CS, Bozkurt L, Yarragudi R, Prikoszovich T, Tura A, Pacini G, Koppensteiner R, Kautzky-Willer A. A Biomarkers of endothelial dysfunction in relation to impaired carbohydrate metabolism following pregnancy with gestational diabetes mellitus. Cardiovasc Diabetol. 2014;13:138.CrossRefPubMedPubMedCentral Göbl CS, Bozkurt L, Yarragudi R, Prikoszovich T, Tura A, Pacini G, Koppensteiner R, Kautzky-Willer A. A Biomarkers of endothelial dysfunction in relation to impaired carbohydrate metabolism following pregnancy with gestational diabetes mellitus. Cardiovasc Diabetol. 2014;13:138.CrossRefPubMedPubMedCentral
34.
go back to reference Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.CrossRefPubMed Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.CrossRefPubMed
35.
go back to reference Rizzo M, Rizvi AA, Patti AM, Nikolic D, Giglio RV, Castellino G, et al. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: an 18-month prospective study. Cardiovasc Diabetol. 2016;15(1):162.CrossRefPubMedPubMedCentral Rizzo M, Rizvi AA, Patti AM, Nikolic D, Giglio RV, Castellino G, et al. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: an 18-month prospective study. Cardiovasc Diabetol. 2016;15(1):162.CrossRefPubMedPubMedCentral
36.
go back to reference Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.CrossRefPubMedPubMedCentral Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.CrossRefPubMedPubMedCentral
37.
go back to reference Vergès B, Charbonnel B. After the LEADER trial and SUSTAIN-6, how do we explain the cardiovascular benefits of some GLP-1 receptor agonists? Diabetes Metab. 2017;43(Suppl 1):S3–12. Vergès B, Charbonnel B. After the LEADER trial and SUSTAIN-6, how do we explain the cardiovascular benefits of some GLP-1 receptor agonists? Diabetes Metab. 2017;43(Suppl 1):S3–12.
38.
go back to reference Hawley S, Selbert M, Goldstein E, Edelman A, Carling D, et al. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2 +/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem. 1995;270:27186–91.CrossRefPubMed Hawley S, Selbert M, Goldstein E, Edelman A, Carling D, et al. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2 +/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem. 1995;270:27186–91.CrossRefPubMed
39.
go back to reference Krasner NM, Ido Y, Ruderman NB, Cacicedo JM. Glucagon-like peptide-1(GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS ONE. 2014;9(5):e9755.CrossRef Krasner NM, Ido Y, Ruderman NB, Cacicedo JM. Glucagon-like peptide-1(GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS ONE. 2014;9(5):e9755.CrossRef
40.
go back to reference Di Tomo P, Lanuti P, Di Pietro N, Baldassarre MPA, Marchisio M, Pandolfi A, Consoli A, Formoso G. Liraglutide mitigates TNF-α induced pro-atherogenic changes and microvesicle release in HUVEC from diabetic women. Diabetes Metab Res Rev. 2017;33:e2925.CrossRef Di Tomo P, Lanuti P, Di Pietro N, Baldassarre MPA, Marchisio M, Pandolfi A, Consoli A, Formoso G. Liraglutide mitigates TNF-α induced pro-atherogenic changes and microvesicle release in HUVEC from diabetic women. Diabetes Metab Res Rev. 2017;33:e2925.CrossRef
41.
go back to reference Ebtehaj S, Gruppen EG, Parvizi M, Tietge UJF, Dullaart RPF. The anti-inflammatory function of HDL is impaired in type 2 diabetes: role of hyperglycemia, paraoxonase-1 and low grade inflammation. Cardiovasc Diabetol. 2017;16(1):132.CrossRefPubMedPubMedCentral Ebtehaj S, Gruppen EG, Parvizi M, Tietge UJF, Dullaart RPF. The anti-inflammatory function of HDL is impaired in type 2 diabetes: role of hyperglycemia, paraoxonase-1 and low grade inflammation. Cardiovasc Diabetol. 2017;16(1):132.CrossRefPubMedPubMedCentral
42.
go back to reference Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287(6):E1209–15.CrossRefPubMed Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287(6):E1209–15.CrossRefPubMed
43.
go back to reference Li PC, Liu LF, Jou MJ, Wang HK. The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice. BMC Neurosci. 2016;17(1):37.CrossRefPubMedPubMedCentral Li PC, Liu LF, Jou MJ, Wang HK. The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice. BMC Neurosci. 2016;17(1):37.CrossRefPubMedPubMedCentral
Metadata
Title
Liraglutide suppresses non-esterified free fatty acids and soluble vascular cell adhesion molecule-1 compared with metformin in patients with recent-onset type 2 diabetes
Authors
Xiao-min Chen
Wen-qiang Zhang
Yuan Tian
Li-fen Wang
Chan-chan Chen
Chuan-mei Qiu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2018
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-018-0701-4

Other articles of this Issue 1/2018

Cardiovascular Diabetology 1/2018 Go to the issue