Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2018

Open Access 01-12-2018 | Original investigation

Glitazones and alpha-glucosidase inhibitors as the second-line oral anti-diabetic agents added to metformin reduce cardiovascular risk in Type 2 diabetes patients: a nationwide cohort observational study

Authors: Cheng-Wei Chan, Chu-Leng Yu, Jiunn-Cherng Lin, Yu-Cheng Hsieh, Che-Chen Lin, Chen-Ying Hung, Cheng-Hung Li, Ying-Chieh Liao, Chu-Pin Lo, Jin-Long Huang, Ching-Heng Lin, Tsu-Juey Wu

Published in: Cardiovascular Diabetology | Issue 1/2018

Login to get access

Abstract

Objective

Metformin is the standard first-line drug for patients with Type 2 diabetes (T2DM). However, the optimal second-line oral anti-diabetic agent (ADA) remains unclear. We investigated the cardiovascular risk of various ADAs used as add-on medication to metformin in T2DM patients from a nationwide cohort.

Methods

T2DM patients using different add-on oral ADAs after an initial metformin therapy of > 90 days were identified from the Taiwan National Health Insurance Database. Five classes of ADAs, including sulphonylureas (SU), glinides, thiazolidinediones (TZD), alpha-glucosidase inhibitors (AGI), and dipeptidyl peptidase-4 inhibitors (DPP-4I) were selected for analysis. The reference group was the SU added to metformin. Patients were excluded if aged < 20 years, had a history of stroke or acute coronary syndrome (ACS), or were receiving insulin treatment. The primary outcomes included any major adverse cardiovascular event (MACE) including ACS, ischemic/hemorrhagic stroke, and death. A Cox regression model was used to estimate the hazard ratio (HR) for MACE.

Results

A total of 26,742 patients receiving their add-on drug to metformin of either SU (n = 24,277), glinides (n = 962), TZD (n = 581), AGI (n = 808), or DPP-4I (n = 114) were analyzed. After a mean follow-up duration of 6.6 ± 3.4 years, a total of 4775 MACEs occurred. Compared with the SU+metformin group (reference), the TZD+metformin (adjusted HR: 0.66; 95% CI 0.50–0.88, p = 0.004) and AGI+metformin (adjusted HR: 0.74; 95% CI 0.59–0.94, p = 0.01) groups showed a significantly lower risk of MACE.

Conclusion

Both TZD and AGI, when used as an add-on drug to metformin were associated with lower MACE risk when compared with SU added to metformin in this retrospective cohort study.
Trial registration CE13152B-3. Registered 7 Mar, 2013, retrospectively registered
Appendix
Available only for authorised users
Literature
1.
go back to reference Rutter MK, Nesto RW. Blood pressure, lipids and glucose in Type 2 diabetes: how low should we go? Re-discovering personalized care. Eur Heart J. 2011;32:2247–55.PubMedCrossRef Rutter MK, Nesto RW. Blood pressure, lipids and glucose in Type 2 diabetes: how low should we go? Re-discovering personalized care. Eur Heart J. 2011;32:2247–55.PubMedCrossRef
3.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef
4.
go back to reference Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in Type 2 diabetes. N Engl J Med. 2008;359:1577–89.PubMedCrossRef Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in Type 2 diabetes. N Engl J Med. 2008;359:1577–89.PubMedCrossRef
5.
go back to reference Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in Type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.PubMedCrossRef Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in Type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.PubMedCrossRef
6.
go back to reference Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with Type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281:2005–12.PubMedCrossRef Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with Type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281:2005–12.PubMedCrossRef
7.
go back to reference Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N Engl J Med. 2008;358:2560–72.PubMedCrossRef Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N Engl J Med. 2008;358:2560–72.PubMedCrossRef
8.
go back to reference Liao HW, Saver JL, Wu YL, Chen TH, Lee M, Ovbiagele B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and Type 2 diabetes: a systematic review and meta-analysis. BMJ Open. 2017;7:e013927.PubMedPubMedCentralCrossRef Liao HW, Saver JL, Wu YL, Chen TH, Lee M, Ovbiagele B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and Type 2 diabetes: a systematic review and meta-analysis. BMJ Open. 2017;7:e013927.PubMedPubMedCentralCrossRef
9.
go back to reference Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with Type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.PubMedCrossRef Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with Type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.PubMedCrossRef
10.
go back to reference Tian Y, Chen T, Wu Y, et al. Pioglitazone stabilizes atherosclerotic plaque by regulating the Th17/Treg balance in AMPK-dependent mechanisms. Cardiovasc Diabetol. 2017;16:140.PubMedPubMedCentralCrossRef Tian Y, Chen T, Wu Y, et al. Pioglitazone stabilizes atherosclerotic plaque by regulating the Th17/Treg balance in AMPK-dependent mechanisms. Cardiovasc Diabetol. 2017;16:140.PubMedPubMedCentralCrossRef
11.
go back to reference Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290:486–94.PubMedCrossRef Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290:486–94.PubMedCrossRef
12.
go back to reference Shimabukuro M, Tanaka A, Sata M, et al. alpha-Glucosidase inhibitor miglitol attenuates glucose fluctuation, heart rate variability and sympathetic activity in patients with Type 2 diabetes and acute coronary syndrome: a multicenter randomized controlled (MACS) study. Cardiovasc Diabetol. 2017;16:86.PubMedPubMedCentralCrossRef Shimabukuro M, Tanaka A, Sata M, et al. alpha-Glucosidase inhibitor miglitol attenuates glucose fluctuation, heart rate variability and sympathetic activity in patients with Type 2 diabetes and acute coronary syndrome: a multicenter randomized controlled (MACS) study. Cardiovasc Diabetol. 2017;16:86.PubMedPubMedCentralCrossRef
13.
go back to reference Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2015;373:232–42.PubMedCrossRef Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2015;373:232–42.PubMedCrossRef
14.
go back to reference Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with Type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.PubMedCrossRef Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with Type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.PubMedCrossRef
15.
go back to reference White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with Type 2 diabetes. N Engl J Med. 2013;369:1327–35.PubMedCrossRef White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with Type 2 diabetes. N Engl J Med. 2013;369:1327–35.PubMedCrossRef
16.
go back to reference Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with Type 2 diabetes: a meta-analysis. JAMA. 2016;316:313–24.PubMedCrossRef Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with Type 2 diabetes: a meta-analysis. JAMA. 2016;316:313–24.PubMedCrossRef
17.
go back to reference Nathan DM, Buse JB, Kahn SE, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013;36:2254–61.PubMedPubMedCentralCrossRef Nathan DM, Buse JB, Kahn SE, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013;36:2254–61.PubMedPubMedCentralCrossRef
18.
go back to reference Ekstrom N, Svensson AM, Miftaraj M, et al. Cardiovascular safety of glucose-lowering agents as add-on medication to metformin treatment in Type 2 diabetes: report from the Swedish National Diabetes Register. Diabetes Obes Metab. 2016;18:990–8.PubMedCrossRef Ekstrom N, Svensson AM, Miftaraj M, et al. Cardiovascular safety of glucose-lowering agents as add-on medication to metformin treatment in Type 2 diabetes: report from the Swedish National Diabetes Register. Diabetes Obes Metab. 2016;18:990–8.PubMedCrossRef
19.
go back to reference Seong JM, Choi NK, Shin JY, et al. Differential cardiovascular outcomes after dipeptidyl peptidase-4 inhibitor, sulfonylurea, and pioglitazone therapy, all in combination with metformin, for Type 2 diabetes: a population-based cohort study. PLoS ONE. 2015;10:e0124287.PubMedPubMedCentralCrossRef Seong JM, Choi NK, Shin JY, et al. Differential cardiovascular outcomes after dipeptidyl peptidase-4 inhibitor, sulfonylurea, and pioglitazone therapy, all in combination with metformin, for Type 2 diabetes: a population-based cohort study. PLoS ONE. 2015;10:e0124287.PubMedPubMedCentralCrossRef
20.
go back to reference Ha KH, Kim B, Choi H, Kim DJ, Kim HC. Cardiovascular events associated with second-line anti-diabetes treatments: analysis of real-world Korean data. Diabet Med. 2017;34:1235–43.PubMedCrossRef Ha KH, Kim B, Choi H, Kim DJ, Kim HC. Cardiovascular events associated with second-line anti-diabetes treatments: analysis of real-world Korean data. Diabet Med. 2017;34:1235–43.PubMedCrossRef
21.
go back to reference Chang YC, Chuang LM, Lin JW, Chen ST, Lai MS, Chang CH. Cardiovascular risks associated with second-line oral antidiabetic agents added to metformin in patients with Type 2 diabetes: a nationwide cohort study. Diabet Med. 2015;32:1460–9.PubMedCrossRef Chang YC, Chuang LM, Lin JW, Chen ST, Lai MS, Chang CH. Cardiovascular risks associated with second-line oral antidiabetic agents added to metformin in patients with Type 2 diabetes: a nationwide cohort study. Diabet Med. 2015;32:1460–9.PubMedCrossRef
22.
go back to reference Hung CY, Hsieh YC, Li CH, Huang JL, Lin CH, Wu TJ. Age and CHADS2 score predict the effectiveness of renin-angiotensin system blockers on primary prevention of atrial fibrillation. Sci Rep. 2015;5:11442.PubMedPubMedCentralCrossRef Hung CY, Hsieh YC, Li CH, Huang JL, Lin CH, Wu TJ. Age and CHADS2 score predict the effectiveness of renin-angiotensin system blockers on primary prevention of atrial fibrillation. Sci Rep. 2015;5:11442.PubMedPubMedCentralCrossRef
23.
go back to reference Hsieh YC, Hung CY, Li CH, et al. Angiotensin-receptor blocker, angiotensin-converting enzyme inhibitor, and risks of atrial fibrillation: a nationwide cohort study. Medicine (Baltimore). 2016;95:e3721.CrossRef Hsieh YC, Hung CY, Li CH, et al. Angiotensin-receptor blocker, angiotensin-converting enzyme inhibitor, and risks of atrial fibrillation: a nationwide cohort study. Medicine (Baltimore). 2016;95:e3721.CrossRef
24.
go back to reference Ekstrom N, Svensson AM, Miftaraj M, et al. Durability of oral hypoglycemic agents in drug naive patients with Type 2 diabetes: report from the Swedish National Diabetes Register (NDR). BMJ Open Diabetes Res Care. 2015;3:e000059.PubMedPubMedCentralCrossRef Ekstrom N, Svensson AM, Miftaraj M, et al. Durability of oral hypoglycemic agents in drug naive patients with Type 2 diabetes: report from the Swedish National Diabetes Register (NDR). BMJ Open Diabetes Res Care. 2015;3:e000059.PubMedPubMedCentralCrossRef
25.
go back to reference American Diabetes Association. Pharmacologic approaches to glycemic treatment. Sec. 8. In: Standards of Medical Care in Diabetes—2017. Diabetes Care, Vol. 40; 2017. pp. S64–74. American Diabetes Association. Pharmacologic approaches to glycemic treatment. Sec. 8. In: Standards of Medical Care in Diabetes—2017. Diabetes Care, Vol. 40; 2017. pp. S64–74.
26.
go back to reference Zghebi SS, Steinke DT, Rutter MK, Emsley RA, Ashcroft DM. Comparative risk of major cardiovascular events associated with second-line antidiabetic treatments: a retrospective cohort study using UK primary care data linked to hospitalization and mortality records. Diabetes Obes Metab. 2016;18:916–24.PubMedCrossRef Zghebi SS, Steinke DT, Rutter MK, Emsley RA, Ashcroft DM. Comparative risk of major cardiovascular events associated with second-line antidiabetic treatments: a retrospective cohort study using UK primary care data linked to hospitalization and mortality records. Diabetes Obes Metab. 2016;18:916–24.PubMedCrossRef
29.
go back to reference Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with Type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5:887–97.PubMedCrossRef Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with Type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5:887–97.PubMedCrossRef
30.
go back to reference Lu CJ, Sun Y, Muo CH, Chen RC, Chen PC, Hsu CY. Risk of stroke with thiazolidinediones: a ten-year nationwide population-based cohort study. Cerebrovasc Dis. 2013;36:145–51.PubMedCrossRef Lu CJ, Sun Y, Muo CH, Chen RC, Chen PC, Hsu CY. Risk of stroke with thiazolidinediones: a ten-year nationwide population-based cohort study. Cerebrovasc Dis. 2013;36:145–51.PubMedCrossRef
31.
go back to reference de Jong M, van der Worp HB, van der Graaf Y, Visseren FLJ, Westerink J. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials. Cardiovasc Diabetol. 2017;16:134.PubMedPubMedCentralCrossRef de Jong M, van der Worp HB, van der Graaf Y, Visseren FLJ, Westerink J. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials. Cardiovasc Diabetol. 2017;16:134.PubMedPubMedCentralCrossRef
32.
go back to reference Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.PubMedCrossRef Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.PubMedCrossRef
34.
go back to reference Gunin AG, Bitter AD, Demakov AB, Vasilieva EN, Suslonova NV. Effects of peroxisome proliferator activated receptors-alpha and -gamma agonists on estradiol-induced proliferation and hyperplasia formation in the mouse uterus. J Endocrinol. 2004;182:229–39.PubMedCrossRef Gunin AG, Bitter AD, Demakov AB, Vasilieva EN, Suslonova NV. Effects of peroxisome proliferator activated receptors-alpha and -gamma agonists on estradiol-induced proliferation and hyperplasia formation in the mouse uterus. J Endocrinol. 2004;182:229–39.PubMedCrossRef
35.
go back to reference El Midaoui A, Wu R, de Champlain J. Prevention of hypertension, hyperglycemia and vascular oxidative stress by aspirin treatment in chronically glucose-fed rats. J Hypertens. 2002;20:1407–12.PubMedCrossRef El Midaoui A, Wu R, de Champlain J. Prevention of hypertension, hyperglycemia and vascular oxidative stress by aspirin treatment in chronically glucose-fed rats. J Hypertens. 2002;20:1407–12.PubMedCrossRef
36.
go back to reference Ceriello A, Bortolotti N, Motz E, et al. Meal-generated oxidative stress in Type 2 diabetic patients. Diabetes Care. 1998;21:1529–33.PubMedCrossRef Ceriello A, Bortolotti N, Motz E, et al. Meal-generated oxidative stress in Type 2 diabetic patients. Diabetes Care. 1998;21:1529–33.PubMedCrossRef
37.
go back to reference Hyvarinen M, Qiao Q, Tuomilehto J, et al. Hyperglycemia and stroke mortality: comparison between fasting and 2-h glucose criteria. Diabetes Care. 2009;32:348–54.PubMedPubMedCentralCrossRef Hyvarinen M, Qiao Q, Tuomilehto J, et al. Hyperglycemia and stroke mortality: comparison between fasting and 2-h glucose criteria. Diabetes Care. 2009;32:348–54.PubMedPubMedCentralCrossRef
38.
go back to reference Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke. 2004;35:1073–8.PubMedCrossRef Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke. 2004;35:1073–8.PubMedCrossRef
39.
go back to reference Holman RR, Coleman RL, Chan JCN, et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5:877–86.PubMedCrossRef Holman RR, Coleman RL, Chan JCN, et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5:877–86.PubMedCrossRef
40.
go back to reference Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation. 2003;108:2941–8.PubMedCrossRef Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation. 2003;108:2941–8.PubMedCrossRef
41.
go back to reference Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34:29–34.PubMedCrossRef Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34:29–34.PubMedCrossRef
42.
go back to reference Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27:699–703.PubMedCrossRef Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27:699–703.PubMedCrossRef
43.
go back to reference Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with Type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.PubMedCrossRef Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with Type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.PubMedCrossRef
44.
go back to reference Hong G, Lockhart A, Davis B, et al. PPARgamma activation enhances cell surface ENaCalpha via up-regulation of SGK1 in human collecting duct cells. FASEB J. 2003;17:1966–8.PubMedCrossRef Hong G, Lockhart A, Davis B, et al. PPARgamma activation enhances cell surface ENaCalpha via up-regulation of SGK1 in human collecting duct cells. FASEB J. 2003;17:1966–8.PubMedCrossRef
45.
go back to reference Yokoyama H, Araki S, Kawai K, et al. Pioglitazone treatment and cardiovascular event and death in subjects with Type 2 diabetes without established cardiovascular disease (JDDM 36). Diabetes Res Clin Pract. 2015;109:485–92.PubMedCrossRef Yokoyama H, Araki S, Kawai K, et al. Pioglitazone treatment and cardiovascular event and death in subjects with Type 2 diabetes without established cardiovascular disease (JDDM 36). Diabetes Res Clin Pract. 2015;109:485–92.PubMedCrossRef
46.
go back to reference Ninomiya T, Perkovic V, de Galan BE, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20:1813–21.PubMedPubMedCentralCrossRef Ninomiya T, Perkovic V, de Galan BE, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20:1813–21.PubMedPubMedCentralCrossRef
47.
go back to reference Bae JC. Diabetes drugs and cardiovascular safety. Endocrinol Metab (Seoul). 2016;31:239–44.CrossRef Bae JC. Diabetes drugs and cardiovascular safety. Endocrinol Metab (Seoul). 2016;31:239–44.CrossRef
48.
go back to reference Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRef Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRef
49.
go back to reference Ou HT, Chang KC, Li CY, Wu JS. Risks of cardiovascular diseases associated with dipeptidyl peptidase-4 inhibitors and other antidiabetic drugs in patients with Type 2 diabetes: a nation-wide longitudinal study. Cardiovasc Diabetol. 2016;15:41.PubMedPubMedCentralCrossRef Ou HT, Chang KC, Li CY, Wu JS. Risks of cardiovascular diseases associated with dipeptidyl peptidase-4 inhibitors and other antidiabetic drugs in patients with Type 2 diabetes: a nation-wide longitudinal study. Cardiovasc Diabetol. 2016;15:41.PubMedPubMedCentralCrossRef
50.
go back to reference Rosenstock J, Marx N, Neubacher D, et al. Cardiovascular safety of linagliptin in Type 2 diabetes: a comprehensive patient-level pooled analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol. 2015;14:57.PubMedPubMedCentralCrossRef Rosenstock J, Marx N, Neubacher D, et al. Cardiovascular safety of linagliptin in Type 2 diabetes: a comprehensive patient-level pooled analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol. 2015;14:57.PubMedPubMedCentralCrossRef
Metadata
Title
Glitazones and alpha-glucosidase inhibitors as the second-line oral anti-diabetic agents added to metformin reduce cardiovascular risk in Type 2 diabetes patients: a nationwide cohort observational study
Authors
Cheng-Wei Chan
Chu-Leng Yu
Jiunn-Cherng Lin
Yu-Cheng Hsieh
Che-Chen Lin
Chen-Ying Hung
Cheng-Hung Li
Ying-Chieh Liao
Chu-Pin Lo
Jin-Long Huang
Ching-Heng Lin
Tsu-Juey Wu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2018
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-018-0663-6

Other articles of this Issue 1/2018

Cardiovascular Diabetology 1/2018 Go to the issue