Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2015

Open Access 01-12-2015 | Original investigation

Temporal changes in the prevalence and associates of diabetes-related lower extremity amputations in patients with type 2 diabetes: the Fremantle Diabetes Study

Authors: Mendel Baba, Wendy A. Davis, Paul E. Norman, Timothy M. E. Davis

Published in: Cardiovascular Diabetology | Issue 1/2015

Login to get access

Abstract

Background

To determine temporal changes in the prevalence and associates of lower extremity amputation (LEA) complicating type 2 diabetes.

Methods

Baseline data from the longitudinal observational Fremantle Diabetes Study (FDS) relating to LEA and its risk factors collected from 1296 patients recruited to FDS Phase 1 (FDS1) from 1993 to 1996 and from 1509 patients recruited to FDS Phase 2 (FDS2) from 2008 to 2011 were analysed. Multiple logistic regression was used to determine associates of prevalent LEA in individual and pooled phases. Generalised linear modelling was used to examine whether diabetes related LEA prevalence and its associates had changed between Phases.

Results

There were 15 diabetes-related LEAs at baseline in FDS1 (1.2 %) and 15 in FDS2 (1.0 %; P = 0.22 after age, sex and race/ethnicity adjustment). In multivariable analysis, independent associates of a baseline LEA in FDS1 were a history of vascular bypass surgery or revascularisation, urinary albumin:creatinine ratio, peripheral sensory neuropathy and cerebrovascular disease (P ≤ 0.035). In FDS2, prevalent LEA was independently associated with a history of vascular bypass surgery or revascularisation, past hospitalisation for/current foot ulcer and fasting serum glucose (P ≤ 0.001). In pooled analyses, a history of vascular bypass or revascularisation, past hospitalisation for/current foot ulcer at baseline, urinary albumin:creatinine ratio (P < 0.001), as well as FDS Phase as a binary variable [odds ratio (95 % confidence interval): 0.28 (0.09–0.84) for FDS2 vs FDS1, P = 0.023] were associated with a lower risk of LEA at study entry.

Conclusions

The risk of prevalent LEA in two cohorts of patients with type 2 diabetes from the same Australian community fell by 72 % over a 15-year period after adjustment for important between-group differences in diabetes-related and other variables. This improvement reflects primary care foot health-related initiatives introduced between Phases, and should have important individual and societal benefits against a background of a progressively increasing diabetes burden.
Literature
1.
go back to reference Ford ES. Trends in the risk for coronary heart disease among adults with diagnosed diabetes in the US: findings from the National Health and nutrition examination survey, 1999–2008. Diabetes Care. 2011;34(6):1337–43.PubMedCentralPubMedCrossRef Ford ES. Trends in the risk for coronary heart disease among adults with diagnosed diabetes in the US: findings from the National Health and nutrition examination survey, 1999–2008. Diabetes Care. 2011;34(6):1337–43.PubMedCentralPubMedCrossRef
2.
go back to reference Hoerger TJ, Zhang P, Segel JE, Gregg EW, Narayan KM, Hicks KA. Improvements in risk factor control among persons with diabetes in the United States: evidence and implications for remaining life expectancy. Diabetes Res Clin Pract. 2009;86(3):225–32.PubMedCrossRef Hoerger TJ, Zhang P, Segel JE, Gregg EW, Narayan KM, Hicks KA. Improvements in risk factor control among persons with diabetes in the United States: evidence and implications for remaining life expectancy. Diabetes Res Clin Pract. 2009;86(3):225–32.PubMedCrossRef
3.
go back to reference Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514–23.PubMedCrossRef Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514–23.PubMedCrossRef
4.
go back to reference Gregg EW, Cheng YJ, Saydah S, Cowie C, Garfield S, Geiss L, Barker L. Trends in death rates among US adults with and without diabetes between 1997 and 2006: findings from the National Health Interview Survey. Diabetes Care. 2012;35(6):1252–7.PubMedCentralPubMedCrossRef Gregg EW, Cheng YJ, Saydah S, Cowie C, Garfield S, Geiss L, Barker L. Trends in death rates among US adults with and without diabetes between 1997 and 2006: findings from the National Health Interview Survey. Diabetes Care. 2012;35(6):1252–7.PubMedCentralPubMedCrossRef
5.
go back to reference Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.PubMedCentralPubMedCrossRef Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.PubMedCentralPubMedCrossRef
6.
go back to reference Canavan RJ, Unwin NC, Kelly WF, Connolly VM. Diabetes- and nondiabetes-related lower extremity amputation incidence before and after the introduction of better organized diabetes foot care: continuous longitudinal monitoring using a standard method. Diabetes Care. 2008;31(3):459–63.PubMedCrossRef Canavan RJ, Unwin NC, Kelly WF, Connolly VM. Diabetes- and nondiabetes-related lower extremity amputation incidence before and after the introduction of better organized diabetes foot care: continuous longitudinal monitoring using a standard method. Diabetes Care. 2008;31(3):459–63.PubMedCrossRef
7.
go back to reference Edmonds ME, Blundell MP, Morris ME, Thomas EM, Cotton LT, Watkins PJ. Improved survival of the diabetic foot: the role of a specialized foot clinic. QJM. 1986;60(232):763–71.PubMed Edmonds ME, Blundell MP, Morris ME, Thomas EM, Cotton LT, Watkins PJ. Improved survival of the diabetic foot: the role of a specialized foot clinic. QJM. 1986;60(232):763–71.PubMed
8.
go back to reference Krishnan S, Nash F, Baker N, Fowler D, Rayman G. Reduction in diabetic amputations over 11 years in a defined UK population: benefits of multidisciplinary team work and continuous prospective audit. Diabetes Care. 2008;31(1):99–101.PubMedCrossRef Krishnan S, Nash F, Baker N, Fowler D, Rayman G. Reduction in diabetic amputations over 11 years in a defined UK population: benefits of multidisciplinary team work and continuous prospective audit. Diabetes Care. 2008;31(1):99–101.PubMedCrossRef
9.
go back to reference Alvarsson A, Sandgren B, Wendel C, Alvarsson M, Brismar K. A retrospective analysis of amputation rates in diabetic patients: can lower extremity amputations be further prevented? Cardiovasc Diabetol. 2012;11:18.PubMedCentralPubMedCrossRef Alvarsson A, Sandgren B, Wendel C, Alvarsson M, Brismar K. A retrospective analysis of amputation rates in diabetic patients: can lower extremity amputations be further prevented? Cardiovasc Diabetol. 2012;11:18.PubMedCentralPubMedCrossRef
10.
go back to reference Margolis DJ, Hofstad O, Feldman HI. Association between renal failure and foot ulcer or lower-extremity amputation in patients with diabetes. Diabetes Care. 2008;31(7):1331–6.PubMedCentralPubMedCrossRef Margolis DJ, Hofstad O, Feldman HI. Association between renal failure and foot ulcer or lower-extremity amputation in patients with diabetes. Diabetes Care. 2008;31(7):1331–6.PubMedCentralPubMedCrossRef
11.
go back to reference Li Y, Burrows NR, Gregg EW, Albright A, Geiss LS. Declining rates of hospitalization for nontraumatic lower-extremity amputation in the diabetic population aged 40 years or older: US, 1988–2008. Diabetes Care. 2012;35(2):273–7.PubMedCentralPubMedCrossRef Li Y, Burrows NR, Gregg EW, Albright A, Geiss LS. Declining rates of hospitalization for nontraumatic lower-extremity amputation in the diabetic population aged 40 years or older: US, 1988–2008. Diabetes Care. 2012;35(2):273–7.PubMedCentralPubMedCrossRef
12.
go back to reference Kennon B, Leese GP, Cochrane L, Colhoun H, Wild S, Stang D, Sattar N, Pearson D, Lindsay RS, Morris AD, et al. Reduced incidence of lower-extremity amputations in people with diabetes in Scotland: a nationwide study. Diabetes Care. 2012;35(12):2588–90.PubMedCentralPubMedCrossRef Kennon B, Leese GP, Cochrane L, Colhoun H, Wild S, Stang D, Sattar N, Pearson D, Lindsay RS, Morris AD, et al. Reduced incidence of lower-extremity amputations in people with diabetes in Scotland: a nationwide study. Diabetes Care. 2012;35(12):2588–90.PubMedCentralPubMedCrossRef
13.
go back to reference van Houtum WH, Rauwerda JA, Ruwaard D, Schaper NC, Bakker K. Reduction in diabetes-related lower-extremity amputations in The Netherlands: 1991–2000. Diabetes Care. 2004;27(5):1042–6.PubMedCrossRef van Houtum WH, Rauwerda JA, Ruwaard D, Schaper NC, Bakker K. Reduction in diabetes-related lower-extremity amputations in The Netherlands: 1991–2000. Diabetes Care. 2004;27(5):1042–6.PubMedCrossRef
14.
go back to reference Buckley CM, O’Farrell A, Canavan RJ, Lynch AD, De La Harpe DV, Bradley CP, Perry IJ. Trends in the incidence of lower extremity amputations in people with and without diabetes over a five-year period in the Republic of Ireland. PLoS One. 2012;7(7):e41492.CrossRef Buckley CM, O’Farrell A, Canavan RJ, Lynch AD, De La Harpe DV, Bradley CP, Perry IJ. Trends in the incidence of lower extremity amputations in people with and without diabetes over a five-year period in the Republic of Ireland. PLoS One. 2012;7(7):e41492.CrossRef
15.
go back to reference McCaslin JE, Hafez HM, Stansby G. Lower-limb revascularization and major amputation rates in England. Br J Surg. 2007;94(7):835–9.PubMedCrossRef McCaslin JE, Hafez HM, Stansby G. Lower-limb revascularization and major amputation rates in England. Br J Surg. 2007;94(7):835–9.PubMedCrossRef
16.
go back to reference Trautner C, Haastert B, Spraul M, Giani G, Berger M. Unchanged incidence of lower-limb amputations in a German City, 1990–1998. Diabetes Care. 2001;24(5):855–9.PubMedCrossRef Trautner C, Haastert B, Spraul M, Giani G, Berger M. Unchanged incidence of lower-limb amputations in a German City, 1990–1998. Diabetes Care. 2001;24(5):855–9.PubMedCrossRef
17.
go back to reference Vamos EP, Bottle A, Majeed A, Millett C. Trends in lower extremity amputations in people with and without diabetes in England, 1996–2005. Diabetes Res Clin Pract. 2010;87(2):275–82.PubMedCrossRef Vamos EP, Bottle A, Majeed A, Millett C. Trends in lower extremity amputations in people with and without diabetes in England, 1996–2005. Diabetes Res Clin Pract. 2010;87(2):275–82.PubMedCrossRef
18.
go back to reference Davis TM, Bruce DG, Davis WA. Cohort profile: the Fremantle diabetes study. Int J Epidemiol. 2013;42(2):412–21.PubMedCrossRef Davis TM, Bruce DG, Davis WA. Cohort profile: the Fremantle diabetes study. Int J Epidemiol. 2013;42(2):412–21.PubMedCrossRef
19.
go back to reference Feldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994;17(11):1281–9.PubMedCrossRef Feldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994;17(11):1281–9.PubMedCrossRef
20.
go back to reference Davis WA, Norman PE, Bruce DG, Davis TM. Predictors, consequences and costs of diabetes-related lower extremity amputation complicating type 2 diabetes: the Fremantle diabetes study. Diabetologia. 2006;49(11):2634–41.PubMedCrossRef Davis WA, Norman PE, Bruce DG, Davis TM. Predictors, consequences and costs of diabetes-related lower extremity amputation complicating type 2 diabetes: the Fremantle diabetes study. Diabetologia. 2006;49(11):2634–41.PubMedCrossRef
21.
go back to reference Global Lower Extremity Amputation Study G. Epidemiology of lower extremity amputation in centres in Europe, North America and East Asia. The global lower extremity amputation study group. Br J Surg. 2000;87(3):328–37.CrossRef Global Lower Extremity Amputation Study G. Epidemiology of lower extremity amputation in centres in Europe, North America and East Asia. The global lower extremity amputation study group. Br J Surg. 2000;87(3):328–37.CrossRef
22.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedCentralPubMedCrossRef Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedCentralPubMedCrossRef
23.
go back to reference Holman CD, Bass AJ, Rouse IL, Hobbs MST. Population-based linkage of health records in WA: development of a health services research linked database. Aust NZ J Publ Hth. 1999;23:453–9.CrossRef Holman CD, Bass AJ, Rouse IL, Hobbs MST. Population-based linkage of health records in WA: development of a health services research linked database. Aust NZ J Publ Hth. 1999;23:453–9.CrossRef
24.
go back to reference Norman PE, Semmens JB, Laurvick CL, Lawrence-Brown M. Long-term relative survival in elderly patients after carotid endarterectomy: a population-based study. Stroke. 2003;34(7):e95–8.PubMedCrossRef Norman PE, Semmens JB, Laurvick CL, Lawrence-Brown M. Long-term relative survival in elderly patients after carotid endarterectomy: a population-based study. Stroke. 2003;34(7):e95–8.PubMedCrossRef
25.
go back to reference Davis TME, Hunt K, McAullay D, Chubb SAP, Sillars BA, Bruce DG, Davis WA. Continuing disparities in cardiovascular risk factors and complications between Aboriginal and Anglo-Celt Australians with type 2 diabetes: the Fremantle diabetes study. Diabetes Care. 2012;35(10):2005–11.PubMedCentralPubMedCrossRef Davis TME, Hunt K, McAullay D, Chubb SAP, Sillars BA, Bruce DG, Davis WA. Continuing disparities in cardiovascular risk factors and complications between Aboriginal and Anglo-Celt Australians with type 2 diabetes: the Fremantle diabetes study. Diabetes Care. 2012;35(10):2005–11.PubMedCentralPubMedCrossRef
26.
go back to reference Baba M, Davis WA, Norman PE, Davis TM. Temporal changes in the prevalence and associates of foot ulceration in type 2 diabetes: the Fremantle diabetes study. J Diabetes Complicat. 2015;29(3):356–61.PubMedCrossRef Baba M, Davis WA, Norman PE, Davis TM. Temporal changes in the prevalence and associates of foot ulceration in type 2 diabetes: the Fremantle diabetes study. J Diabetes Complicat. 2015;29(3):356–61.PubMedCrossRef
27.
go back to reference Kurowski JR, Nedkoff L, Schoen DE, Knuiman M, Norman PE, Briffa TG. Temporal trends in initial and recurrent lower extremity amputations in people with and without diabetes in Western Australia from 2000 to 2010. Diabetes Res Clin Pract. 2015;108(2):280–7.PubMedCrossRef Kurowski JR, Nedkoff L, Schoen DE, Knuiman M, Norman PE, Briffa TG. Temporal trends in initial and recurrent lower extremity amputations in people with and without diabetes in Western Australia from 2000 to 2010. Diabetes Res Clin Pract. 2015;108(2):280–7.PubMedCrossRef
28.
go back to reference Lazzarini PA, O’Rourke SR, Russell AW, Derhy PH, Kamp MC. Reduced incidence of foot-related hospitalisation and amputation amongst persons with diabetes in Queensland, Australia. PLoS One. 2015;10(6):e0130609.PubMedCentralPubMedCrossRef Lazzarini PA, O’Rourke SR, Russell AW, Derhy PH, Kamp MC. Reduced incidence of foot-related hospitalisation and amputation amongst persons with diabetes in Queensland, Australia. PLoS One. 2015;10(6):e0130609.PubMedCentralPubMedCrossRef
29.
go back to reference Menz H. Utilisation of podiatry services in Australia under the medicare enhanced primary care program, 2004–2008. J Foot Ankle Res. 2009;2:30. doi:10.1186/1757-1146-2-30 Menz H. Utilisation of podiatry services in Australia under the medicare enhanced primary care program, 2004–2008. J Foot Ankle Res. 2009;2:30. doi:10.​1186/​1757-1146-2-30
30.
go back to reference McCabe CJ, Stevenson RC, Dolan AM. Evaluation of a diabetic foot screening and protection programme. Diabet Med. 1998;15(1):80–4.PubMedCrossRef McCabe CJ, Stevenson RC, Dolan AM. Evaluation of a diabetic foot screening and protection programme. Diabet Med. 1998;15(1):80–4.PubMedCrossRef
32.
go back to reference Commonwealth Department of Health and Aged Care. National diabetes strategy 2000–2004. Canberra: Commonwealth Department of Health and Aged Care; 1999. Commonwealth Department of Health and Aged Care. National diabetes strategy 2000–2004. Canberra: Commonwealth Department of Health and Aged Care; 1999.
34.
go back to reference Bergin SM, Alford JB, Allard BP, Gurr JM, Holland EL, Horsley MW, Kamp MC, Lazzarini PA, Nube VL, Sinha AK, et al. A limb lost every 3 hours: can Australia reduce amputations in people with diabetes? Med J Aust. 2012;197(4):197–8.PubMedCrossRef Bergin SM, Alford JB, Allard BP, Gurr JM, Holland EL, Horsley MW, Kamp MC, Lazzarini PA, Nube VL, Sinha AK, et al. A limb lost every 3 hours: can Australia reduce amputations in people with diabetes? Med J Aust. 2012;197(4):197–8.PubMedCrossRef
36.
go back to reference Payne CB. Diabetes-related lower-limb amputations in Australia. Med J Aust. 2000;173(7):352–4.PubMed Payne CB. Diabetes-related lower-limb amputations in Australia. Med J Aust. 2000;173(7):352–4.PubMed
37.
go back to reference Adler AI, Boyko EJ, Ahroni JH, Smith DG. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care. 1999;22(7):1029–35.PubMedCrossRef Adler AI, Boyko EJ, Ahroni JH, Smith DG. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care. 1999;22(7):1029–35.PubMedCrossRef
38.
go back to reference Moss SE, Klein R, Klein BE. The 14-year incidence of lower-extremity amputations in a diabetic population. The Wisconsin epidemiologic study of diabetic retinopathy. Diabetes Care. 1999;22(6):951–9.PubMedCrossRef Moss SE, Klein R, Klein BE. The 14-year incidence of lower-extremity amputations in a diabetic population. The Wisconsin epidemiologic study of diabetic retinopathy. Diabetes Care. 1999;22(6):951–9.PubMedCrossRef
39.
go back to reference Reiber GE, Pecoraro RE, Koepsell TD. Risk factors for amputation in patients with diabetes mellitus. A case-control study. Ann Intern Med. 1992;117(2):97–105.PubMedCrossRef Reiber GE, Pecoraro RE, Koepsell TD. Risk factors for amputation in patients with diabetes mellitus. A case-control study. Ann Intern Med. 1992;117(2):97–105.PubMedCrossRef
40.
go back to reference Hamalainen H, Ronnemaa T, Halonen JP, Toikka T. Factors predicting lower extremity amputations in patients with type 1 or type 2 diabetes mellitus: a population-based 7-year follow-up study. J Intern Med. 1999;246(1):97–103.PubMedCrossRef Hamalainen H, Ronnemaa T, Halonen JP, Toikka T. Factors predicting lower extremity amputations in patients with type 1 or type 2 diabetes mellitus: a population-based 7-year follow-up study. J Intern Med. 1999;246(1):97–103.PubMedCrossRef
41.
go back to reference Jorgensen M, Almdal T, Faerch K. Reduced incidence of lower extremity amputations in a Danish diabetes population from 2000 to 2011. Diabet Med. 2014;31:443–7.PubMedCrossRef Jorgensen M, Almdal T, Faerch K. Reduced incidence of lower extremity amputations in a Danish diabetes population from 2000 to 2011. Diabet Med. 2014;31:443–7.PubMedCrossRef
42.
go back to reference Ep Vamos, Bottle A, Me Edmonds, Valabhji J, Majeed A, Millett C. changes in the incidence of lower extremity amputations in individuals with and without diabetes in England between 2004 and 2008. Diabetes Care. 2010;33(12):2592–7.CrossRef Ep Vamos, Bottle A, Me Edmonds, Valabhji J, Majeed A, Millett C. changes in the incidence of lower extremity amputations in individuals with and without diabetes in England between 2004 and 2008. Diabetes Care. 2010;33(12):2592–7.CrossRef
43.
go back to reference Goodney PP, Beck AW, Nagle J, Welch HG, Zwolak RM. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60.PubMedCrossRef Goodney PP, Beck AW, Nagle J, Welch HG, Zwolak RM. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60.PubMedCrossRef
44.
go back to reference Moss SE, Klein R, Klein BE. The prevalence and incidence of lower extremity amputation in a diabetic population. Arch Intern Med. 1992;152(3):610–6.PubMedCrossRef Moss SE, Klein R, Klein BE. The prevalence and incidence of lower extremity amputation in a diabetic population. Arch Intern Med. 1992;152(3):610–6.PubMedCrossRef
45.
46.
go back to reference Eggers PW, Gohdes D, Pugh J. Nontraumatic lower extremity amputations in the medicare end-stage renal disease population. Kidney Intl. 1999;56(4):1524–33.CrossRef Eggers PW, Gohdes D, Pugh J. Nontraumatic lower extremity amputations in the medicare end-stage renal disease population. Kidney Intl. 1999;56(4):1524–33.CrossRef
47.
go back to reference Norman PE, Davis WA, Bruce DG, Davis TM. Peripheral arterial disease and risk of cardiac death in type 2 diabetes: the Fremantle diabetes study. Diabetes Care. 2006;29(3):575–80.PubMedCrossRef Norman PE, Davis WA, Bruce DG, Davis TM. Peripheral arterial disease and risk of cardiac death in type 2 diabetes: the Fremantle diabetes study. Diabetes Care. 2006;29(3):575–80.PubMedCrossRef
48.
go back to reference Armstrong DG, Lavery LA, Harkless LB. Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care. 1998;21(5):855–9.PubMedCrossRef Armstrong DG, Lavery LA, Harkless LB. Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care. 1998;21(5):855–9.PubMedCrossRef
49.
go back to reference Oyibo SO, Jude EB, Tarawneh I, Nguyen HC, Armstrong DG, Harkless LB, Boulton AJ. The effects of ulcer size and site, patient’s age, sex and type and duration of diabetes on the outcome of diabetic foot ulcers. Diabet Med. 2001;18(2):133–8.PubMedCrossRef Oyibo SO, Jude EB, Tarawneh I, Nguyen HC, Armstrong DG, Harkless LB, Boulton AJ. The effects of ulcer size and site, patient’s age, sex and type and duration of diabetes on the outcome of diabetic foot ulcers. Diabet Med. 2001;18(2):133–8.PubMedCrossRef
50.
go back to reference Tice AD, Hoaglund PA, Shoultz DA. Risk factors and treatment outcomes in osteomyelitis. J Antimicrob Chemother. 2003;51(5):1261–8.PubMedCrossRef Tice AD, Hoaglund PA, Shoultz DA. Risk factors and treatment outcomes in osteomyelitis. J Antimicrob Chemother. 2003;51(5):1261–8.PubMedCrossRef
51.
go back to reference Liabeuf S, Bourron O, Vemeer C, Theuwissen E, Magdeleyns E, Aubert CE, Brazier M, Mentaverri R, Hartemann A, Massy ZA. Vascular calcification in patients with type 2 diabetes: the involvement of matrix Gla protein. Cardiovasc Diabetol. 2014;13:85.PubMedCentralPubMedCrossRef Liabeuf S, Bourron O, Vemeer C, Theuwissen E, Magdeleyns E, Aubert CE, Brazier M, Mentaverri R, Hartemann A, Massy ZA. Vascular calcification in patients with type 2 diabetes: the involvement of matrix Gla protein. Cardiovasc Diabetol. 2014;13:85.PubMedCentralPubMedCrossRef
52.
go back to reference Krueger T, Westenfeld R, Ketteler M, Schurgers LJ, Floege J. Vitamin K deficiency in CKD patients: a modifiable risk factor for vascular calcification? Kidney Intl. 2009;76(1):18–22.CrossRef Krueger T, Westenfeld R, Ketteler M, Schurgers LJ, Floege J. Vitamin K deficiency in CKD patients: a modifiable risk factor for vascular calcification? Kidney Intl. 2009;76(1):18–22.CrossRef
53.
go back to reference Malmstedt J, Karvestedt L, Swedenborg J, Brismar K. The receptor for advanced glycation end products and risk of peripheral arterial disease, amputation or death in type 2 diabetes: a population-based cohort study. Cardiovasc Diabetol. 2015;14:93.PubMedCentralPubMedCrossRef Malmstedt J, Karvestedt L, Swedenborg J, Brismar K. The receptor for advanced glycation end products and risk of peripheral arterial disease, amputation or death in type 2 diabetes: a population-based cohort study. Cardiovasc Diabetol. 2015;14:93.PubMedCentralPubMedCrossRef
54.
go back to reference Walters DP, Gatling W, Mullee MA, Hill RD. The distribution and severity of diabetic foot disease: a community study with comparison to a non-diabetic group. Diabet Med. 1992;9(4):354–8.PubMedCrossRef Walters DP, Gatling W, Mullee MA, Hill RD. The distribution and severity of diabetic foot disease: a community study with comparison to a non-diabetic group. Diabet Med. 1992;9(4):354–8.PubMedCrossRef
55.
go back to reference Abbott CA, Carrington AL, Ashe H, Bath S, Every LC, Griffiths J, Hann AW, Hussein A, Jackson N, Johnson KE, et al. The North-West diabetes foot care study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet Med. 2002;19(5):377–84.PubMedCrossRef Abbott CA, Carrington AL, Ashe H, Bath S, Every LC, Griffiths J, Hann AW, Hussein A, Jackson N, Johnson KE, et al. The North-West diabetes foot care study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet Med. 2002;19(5):377–84.PubMedCrossRef
56.
go back to reference Crawford F, Inkster M, Kleijnen J, Fahey T. Predicting foot ulcers in patients with diabetes: a systematic review and meta-analysis. QJM. 2007;100(2):65–86.PubMedCrossRef Crawford F, Inkster M, Kleijnen J, Fahey T. Predicting foot ulcers in patients with diabetes: a systematic review and meta-analysis. QJM. 2007;100(2):65–86.PubMedCrossRef
57.
go back to reference Monteiro-Soares M, Boyko EJ, Ribeiro J, Ribeiro I, Dinis-Ribeiro M. Predictive factors for diabetic foot ulceration: a systematic review. Diabetes Metab Res Rev. 2012;28(7):574–600.PubMedCrossRef Monteiro-Soares M, Boyko EJ, Ribeiro J, Ribeiro I, Dinis-Ribeiro M. Predictive factors for diabetic foot ulceration: a systematic review. Diabetes Metab Res Rev. 2012;28(7):574–600.PubMedCrossRef
Metadata
Title
Temporal changes in the prevalence and associates of diabetes-related lower extremity amputations in patients with type 2 diabetes: the Fremantle Diabetes Study
Authors
Mendel Baba
Wendy A. Davis
Paul E. Norman
Timothy M. E. Davis
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2015
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-015-0315-z

Other articles of this Issue 1/2015

Cardiovascular Diabetology 1/2015 Go to the issue