Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2015

Open Access 01-12-2015 | Original investigation

Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside

Authors: Eloise A Bradley, Lei Zhang, Amanda J Genders, Stephen M Richards, Stephen Rattigan, Michelle A Keske

Published in: Cardiovascular Diabetology | Issue 1/2015

Login to get access

Abstract

Background

Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR.

Methods

Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R’g) was determined radioisotopically with 14C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles.

Results

AICAR did not affect blood glucose, or lower leg R’g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R’g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R’g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R’g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion.

Conclusions

AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.
Literature
1.
go back to reference Rattigan S, Clark MG, Barrett EJ (1997) Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes 46(9):1381–1388PubMedCrossRef Rattigan S, Clark MG, Barrett EJ (1997) Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes 46(9):1381–1388PubMedCrossRef
2.
go back to reference Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG et al (2002) Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes 51(1):42–48PubMedCrossRef Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG et al (2002) Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes 51(1):42–48PubMedCrossRef
3.
go back to reference Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S et al (2004) Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 53(6):1418–1423PubMedCrossRef Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S et al (2004) Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 53(6):1418–1423PubMedCrossRef
4.
go back to reference Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S (2003) Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab 285(1):E123–E129PubMedCrossRef Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S (2003) Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab 285(1):E123–E129PubMedCrossRef
5.
go back to reference Rodnick KJ, Henriksen EJ, James DE, Holloszy JO (1992) Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am J Physiol 262:C9–C14PubMed Rodnick KJ, Henriksen EJ, James DE, Holloszy JO (1992) Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am J Physiol 262:C9–C14PubMed
6.
go back to reference Stephens JM, Pilch PF (1995) The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev 16:529–546PubMed Stephens JM, Pilch PF (1995) The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev 16:529–546PubMed
7.
go back to reference Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ (2006) Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes 55(5):1436–1442PubMedCrossRef Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ (2006) Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes 55(5):1436–1442PubMedCrossRef
8.
go back to reference Keske MA, Clerk LH, Price WJ, Jahn LA, Barrett EJ (2009) Obesity blunts microvascular recruitment in human forearm muscle after a mixed meal. Diabetes Care 32(9):1672–1677PubMedCentralPubMedCrossRef Keske MA, Clerk LH, Price WJ, Jahn LA, Barrett EJ (2009) Obesity blunts microvascular recruitment in human forearm muscle after a mixed meal. Diabetes Care 32(9):1672–1677PubMedCentralPubMedCrossRef
9.
go back to reference Sjoberg KA, Rattigan S, Hiscock NJ, Richter EA, Kiens B (2011) A new method to study changes in microvascular blood volume in muscle and adipose tissue: real time imaging in humans and rat. Am J Physiol Heart Circ Physiol 301(2):H450–H458PubMedCrossRef Sjoberg KA, Rattigan S, Hiscock NJ, Richter EA, Kiens B (2011) A new method to study changes in microvascular blood volume in muscle and adipose tissue: real time imaging in humans and rat. Am J Physiol Heart Circ Physiol 301(2):H450–H458PubMedCrossRef
10.
go back to reference Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H et al (2006) Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab 290(6):E1191–E1197PubMedCrossRef Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H et al (2006) Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab 290(6):E1191–E1197PubMedCrossRef
11.
go back to reference Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T et al (2011) Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 13(3):294–307PubMedCrossRef Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T et al (2011) Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 13(3):294–307PubMedCrossRef
12.
go back to reference Premilovac D, Bradley EA, Ng HL, Richards SM, Rattigan S, Keske MA (2013) Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovasc Res 98(1):28–36PubMedCrossRef Premilovac D, Bradley EA, Ng HL, Richards SM, Rattigan S, Keske MA (2013) Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovasc Res 98(1):28–36PubMedCrossRef
13.
go back to reference St Pierre P, Genders AJ, Keske MA, Richards SM, Rattigan S (2010) Loss of insulin-mediated microvascular perfusion in skeletal muscle is associated with the development of insulin resistance. Diabetes Obes Metab 12(9):798–805PubMedCrossRef St Pierre P, Genders AJ, Keske MA, Richards SM, Rattigan S (2010) Loss of insulin-mediated microvascular perfusion in skeletal muscle is associated with the development of insulin resistance. Diabetes Obes Metab 12(9):798–805PubMedCrossRef
14.
go back to reference Wallis MG, Wheatley CM, Rattigan S, Barrett EJ, Clark AD, Clark MG (2002) Insulin-mediated hemodynamic changes are impaired in muscle of zucker obese rats. Diabetes 51(12):3492–3498PubMedCrossRef Wallis MG, Wheatley CM, Rattigan S, Barrett EJ, Clark AD, Clark MG (2002) Insulin-mediated hemodynamic changes are impaired in muscle of zucker obese rats. Diabetes 51(12):3492–3498PubMedCrossRef
15.
go back to reference Clark MG (2008) Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab 295(4):E732–E750PubMedCentralPubMedCrossRef Clark MG (2008) Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab 295(4):E732–E750PubMedCentralPubMedCrossRef
16.
go back to reference Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P (1994) Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 94(6):2511–2515PubMedCentralPubMedCrossRef Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P (1994) Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 94(6):2511–2515PubMedCentralPubMedCrossRef
17.
go back to reference Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 94:1172–1179PubMedCentralPubMedCrossRef Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 94:1172–1179PubMedCentralPubMedCrossRef
18.
go back to reference Bradley EA, Richards SM, Keske MA, Rattigan S (2013) Local NOS inhibition impairs vascular and metabolic actions of insulin in rat hindleg muscle in vivo. Am J Physiol Endocrinol Metab 305(6):E745–E750PubMedCrossRef Bradley EA, Richards SM, Keske MA, Rattigan S (2013) Local NOS inhibition impairs vascular and metabolic actions of insulin in rat hindleg muscle in vivo. Am J Physiol Endocrinol Metab 305(6):E745–E750PubMedCrossRef
19.
go back to reference Natali A, Quinones GA, Pecori N, Sanna G, Toschi E, Ferrannini E (1998) Vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension 31(2):632–636PubMedCrossRef Natali A, Quinones GA, Pecori N, Sanna G, Toschi E, Ferrannini E (1998) Vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension 31(2):632–636PubMedCrossRef
20.
go back to reference Mahajan H, Richards SM, Rattigan S, Clark MG (2004) Local methacholine but not bradykinin potentiates insulin-mediated glucose uptake in muscle in vivo by augmenting capillary recruitment. Diabetologia 47(12):2226–2234PubMedCrossRef Mahajan H, Richards SM, Rattigan S, Clark MG (2004) Local methacholine but not bradykinin potentiates insulin-mediated glucose uptake in muscle in vivo by augmenting capillary recruitment. Diabetologia 47(12):2226–2234PubMedCrossRef
21.
go back to reference Clark MG, Wallis MG, Barrett EJ, Vincent MA, Richards SM, Clerk LH et al (2003) Blood flow and muscle metabolism: a focus on insulin action. Am J Physiol Endocrinol Metab 284(2):E241–E258PubMedCrossRef Clark MG, Wallis MG, Barrett EJ, Vincent MA, Richards SM, Clerk LH et al (2003) Blood flow and muscle metabolism: a focus on insulin action. Am J Physiol Endocrinol Metab 284(2):E241–E258PubMedCrossRef
22.
go back to reference Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ (2002) Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol 16(8):1931–1942PubMedCrossRef Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ (2002) Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol 16(8):1931–1942PubMedCrossRef
23.
go back to reference Vincent MA, Montagnani M, Quon MJ (2003) Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. CurrDiabRep 3(4):279–288 Vincent MA, Montagnani M, Quon MJ (2003) Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. CurrDiabRep 3(4):279–288
24.
go back to reference Bradley EA, Clark MG, Rattigan S (2007) Acute effects of wortmannin on insulin’s hemodynamic and metabolic actions in vivo. Am J Physiol Endocrinol Metab 292(3):E779–E787PubMedCrossRef Bradley EA, Clark MG, Rattigan S (2007) Acute effects of wortmannin on insulin’s hemodynamic and metabolic actions in vivo. Am J Physiol Endocrinol Metab 292(3):E779–E787PubMedCrossRef
25.
go back to reference Bradley EA, Eringa EC, Stehouwer CD, Korstjens I, Nieuw Amerongen GP, Musters R et al (2010) Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol 30(6):1137–1142PubMedCrossRef Bradley EA, Eringa EC, Stehouwer CD, Korstjens I, Nieuw Amerongen GP, Musters R et al (2010) Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol 30(6):1137–1142PubMedCrossRef
26.
go back to reference Bergeron R, Russell RR III, Young LH, Ren JM, Marcucci M, Lee A et al (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276(5 Pt 1):E938–E944PubMed Bergeron R, Russell RR III, Young LH, Ren JM, Marcucci M, Lee A et al (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276(5 Pt 1):E938–E944PubMed
27.
go back to reference Fisher JS, Gao J, Han DH, Holloszy JO, Nolte LA (2002) Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 282(1):E18–E23PubMed Fisher JS, Gao J, Han DH, Holloszy JO, Nolte LA (2002) Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 282(1):E18–E23PubMed
28.
go back to reference Bergeron R, Previs SF, Cline GW, Perret P, Russell RR III, Young LH et al (2001) Effect of 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 50(5):1076–1082PubMedCrossRef Bergeron R, Previs SF, Cline GW, Perret P, Russell RR III, Young LH et al (2001) Effect of 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 50(5):1076–1082PubMedCrossRef
29.
go back to reference Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5):473–483PubMedCrossRef Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5):473–483PubMedCrossRef
30.
go back to reference Inyard AC, Clerk LH, Vincent MA, Barrett EJ (2007) Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes 56(9):2194–2200PubMedCrossRef Inyard AC, Clerk LH, Vincent MA, Barrett EJ (2007) Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes 56(9):2194–2200PubMedCrossRef
31.
go back to reference Wynants J, Petrov B, Nijhof J, Van Belle H (1987) Optimization of a high-performance liquid chromatographic method for the determination of nucleosides and their catabolies. Application to cat and rabbit heart perfusates. J Chromatogr 386:297–308PubMedCrossRef Wynants J, Petrov B, Nijhof J, Van Belle H (1987) Optimization of a high-performance liquid chromatographic method for the determination of nucleosides and their catabolies. Application to cat and rabbit heart perfusates. J Chromatogr 386:297–308PubMedCrossRef
32.
go back to reference Laughlin MH, Armstrong RB (1983) Rat muscle blood flows as a function of time during prolonged slow treadmill exercise. Am J Physiol 244:H814–H824PubMed Laughlin MH, Armstrong RB (1983) Rat muscle blood flows as a function of time during prolonged slow treadmill exercise. Am J Physiol 244:H814–H824PubMed
33.
go back to reference Morrow VA, Foufelle F, Connell JM, Petrie JR, Gould GW, Salt IP (2003) Direct activation of AMP-activated protein kinase stimulates nitric oxide synthesis in human aortic endothelial cells. J Biol Chem 278(34):31629–31639PubMedCrossRef Morrow VA, Foufelle F, Connell JM, Petrie JR, Gould GW, Salt IP (2003) Direct activation of AMP-activated protein kinase stimulates nitric oxide synthesis in human aortic endothelial cells. J Biol Chem 278(34):31629–31639PubMedCrossRef
34.
go back to reference Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB et al (2002) AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 51(10):2886–2894PubMedCrossRef Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB et al (2002) AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 51(10):2886–2894PubMedCrossRef
35.
go back to reference Iglesias MA, Furler SM, Cooney GJ, Kraegen EW, Ye JM (2004) AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of insulin-resistant rats in vivo. Diabetes 53(7):1649–1654PubMedCrossRef Iglesias MA, Furler SM, Cooney GJ, Kraegen EW, Ye JM (2004) AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of insulin-resistant rats in vivo. Diabetes 53(7):1649–1654PubMedCrossRef
36.
go back to reference Ai H, Ihlemann J, Hellsten Y, Lauritzen HP, Hardie DG, Galbo H et al (2002) Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Am J Physiol Endocrinol Metab 282(6):E1291–E1300PubMedCrossRef Ai H, Ihlemann J, Hellsten Y, Lauritzen HP, Hardie DG, Galbo H et al (2002) Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Am J Physiol Endocrinol Metab 282(6):E1291–E1300PubMedCrossRef
37.
go back to reference Putman CT, Martins KJ, Gallo ME, Lopaschuk GD, Pearcey JA, MacLean IM et al (2007) Alpha-catalytic subunits of 5′AMP-activated protein kinase display fiber-specific expression and are upregulated by chronic low-frequency stimulation in rat muscle. Am J Physiol Regul Integr Comp Physiol 293(3):R1325–R1334. doi:10.1152/ajpregu.00609.2006 PubMedCrossRef Putman CT, Martins KJ, Gallo ME, Lopaschuk GD, Pearcey JA, MacLean IM et al (2007) Alpha-catalytic subunits of 5′AMP-activated protein kinase display fiber-specific expression and are upregulated by chronic low-frequency stimulation in rat muscle. Am J Physiol Regul Integr Comp Physiol 293(3):R1325–R1334. doi:10.​1152/​ajpregu.​00609.​2006 PubMedCrossRef
38.
go back to reference Pencek RR, Shearer J, Camacho RC, James FD, Lacy DB, Fueger PT et al (2005) 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes 54(2):355–360PubMedCrossRef Pencek RR, Shearer J, Camacho RC, James FD, Lacy DB, Fueger PT et al (2005) 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes 54(2):355–360PubMedCrossRef
39.
go back to reference Camacho RC, Pencek RR, Lacy DB, James FD, Donahue EP, Wasserman DH (2005) Portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside infusion overcomes hyperinsulinemic suppression of endogenous glucose output. Diabetes 54(2):373–382PubMedCrossRef Camacho RC, Pencek RR, Lacy DB, James FD, Donahue EP, Wasserman DH (2005) Portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside infusion overcomes hyperinsulinemic suppression of endogenous glucose output. Diabetes 54(2):373–382PubMedCrossRef
40.
go back to reference Camacho RC, Lacy DB, James FD, Donahue EP, Wasserman DH (2005) 5-Aminoimidazole-4-carboxamide-1-{beta}-d-ribofuranoside renders glucose output by the liver of the dog insensitive to a pharmacological increment in insulin. Am J Physiol Endocrinol Metab 289(6):E1039–E1043PubMedCrossRef Camacho RC, Lacy DB, James FD, Donahue EP, Wasserman DH (2005) 5-Aminoimidazole-4-carboxamide-1-{beta}-d-ribofuranoside renders glucose output by the liver of the dog insensitive to a pharmacological increment in insulin. Am J Physiol Endocrinol Metab 289(6):E1039–E1043PubMedCrossRef
41.
go back to reference Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48(8):1667–1671PubMedCrossRef Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48(8):1667–1671PubMedCrossRef
42.
go back to reference Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273(6 Pt 1):E1107–E1112PubMed Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273(6 Pt 1):E1107–E1112PubMed
43.
go back to reference Holmes BF, Kurth-Kraczek EJ, Winder WW (1999) Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87(5):1990–1995PubMed Holmes BF, Kurth-Kraczek EJ, Winder WW (1999) Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87(5):1990–1995PubMed
44.
go back to reference Winder WW (2000) AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol Ther 2(3):441–448PubMedCrossRef Winder WW (2000) AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol Ther 2(3):441–448PubMedCrossRef
45.
go back to reference Atkinson LL, Kozak R, Kelly SE, Onay Besikci A, Russell JC, Lopaschuk GD (2003) Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol Endocrinol Metab 284(5):E923–E930. doi:10.1152/ajpendo.00360.2002 PubMedCrossRef Atkinson LL, Kozak R, Kelly SE, Onay Besikci A, Russell JC, Lopaschuk GD (2003) Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol Endocrinol Metab 284(5):E923–E930. doi:10.​1152/​ajpendo.​00360.​2002 PubMedCrossRef
46.
go back to reference Halse R, Fryer LG, McCormack JG, Carling D, Yeaman SJ (2003) Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes 52(1):9–15PubMedCrossRef Halse R, Fryer LG, McCormack JG, Carling D, Yeaman SJ (2003) Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes 52(1):9–15PubMedCrossRef
47.
go back to reference Hue L, Beauloye C, Marsin AS, Bertrand L, Horman S, Rider MH (2002) Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol 34(9):1091–1097PubMedCrossRef Hue L, Beauloye C, Marsin AS, Bertrand L, Horman S, Rider MH (2002) Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol 34(9):1091–1097PubMedCrossRef
48.
go back to reference Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF (2003) 5-Aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol 284(4):R936–R944PubMedCrossRef Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF (2003) 5-Aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol 284(4):R936–R944PubMedCrossRef
49.
go back to reference Jung CH, Lee MJ, Kang YM, Lee YL, Yoon HK, Kang SW et al (2014) Vaspin inhibits cytokine-induced nuclear factor-kappa B activation and adhesion molecule expression via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Diabetol 13:41. doi:10.1186/1475-2840-13-41 PubMedCentralPubMedCrossRef Jung CH, Lee MJ, Kang YM, Lee YL, Yoon HK, Kang SW et al (2014) Vaspin inhibits cytokine-induced nuclear factor-kappa B activation and adhesion molecule expression via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Diabetol 13:41. doi:10.​1186/​1475-2840-13-41 PubMedCentralPubMedCrossRef
50.
go back to reference Anil TM, Harish C, Lakshmi MN, Harsha K, Onkaramurthy M, Sathish Kumar V et al (2014) CNX-012-570, a direct AMPK activator provides strong glycemic and lipid control along with significant reduction in body weight; studies from both diet-induced obese mice and db/db mice models. Cardiovasc Diabetol 13:27. doi:10.1186/1475-2840-13-27 PubMedCentralPubMedCrossRef Anil TM, Harish C, Lakshmi MN, Harsha K, Onkaramurthy M, Sathish Kumar V et al (2014) CNX-012-570, a direct AMPK activator provides strong glycemic and lipid control along with significant reduction in body weight; studies from both diet-induced obese mice and db/db mice models. Cardiovasc Diabetol 13:27. doi:10.​1186/​1475-2840-13-27 PubMedCentralPubMedCrossRef
51.
go back to reference Clerk LH, Rattigan S, Clark MG (2002) Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes 51(4):1138–1145PubMedCrossRef Clerk LH, Rattigan S, Clark MG (2002) Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes 51(4):1138–1145PubMedCrossRef
52.
go back to reference Wheatley CM, Rattigan S, Richards SM, Barrett EJ, Clark MG (2004) Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab 287(4):E804–E809PubMedCrossRef Wheatley CM, Rattigan S, Richards SM, Barrett EJ, Clark MG (2004) Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab 287(4):E804–E809PubMedCrossRef
53.
go back to reference Inyard AC, Chong DG, Klibanov AL, Barrett EJ (2009) Muscle contraction, but not insulin, increases microvascular blood volume in the presence of free fatty acid-induced insulin resistance. Diabetes 58(11):2457–2463PubMedCentralPubMedCrossRef Inyard AC, Chong DG, Klibanov AL, Barrett EJ (2009) Muscle contraction, but not insulin, increases microvascular blood volume in the presence of free fatty acid-induced insulin resistance. Diabetes 58(11):2457–2463PubMedCentralPubMedCrossRef
54.
Metadata
Title
Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside
Authors
Eloise A Bradley
Lei Zhang
Amanda J Genders
Stephen M Richards
Stephen Rattigan
Michelle A Keske
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2015
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-015-0251-y

Other articles of this Issue 1/2015

Cardiovascular Diabetology 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.