Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2015

Open Access 01-12-2015 | Original investigation

Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice

Authors: Youfang Chen, Jianfeng Du, Yu Tina Zhao, Ling Zhang, Guorong Lv, Shougang Zhuang, Gangjian Qin, Ting C Zhao

Published in: Cardiovascular Diabetology | Issue 1/2015

Login to get access

Abstract

Background

Recent evidence indicates that inhibition of histone deacetylase (HDAC) protects the heart against myocardial injury and stimulates endogenous angiomyogenesis. However, it remains unknown whether HDAC inhibition produces the protective effect in the diabetic heart. We sought to determine whether HDAC inhibition preserves cardiac performance and suppresses cardiac remodeling in diabetic cardiomyopathy.

Methods

Adult ICR mice received an intraperitoneal injection of either streptozotocin (STZ, 200 mg/kg) to establish the diabetic model or vehicle to serve as control. Once hyperglycemia was confirmed, diabetic mice received sodium butyrate (1%), a specific HDAC inhibitor, in drinking water on a daily basis to inhibit HDAC activity. Mice were randomly divided into following groups, which includes Control, Control + Sodium butyrate (NaBu), STZ and STZ + Sodium butyrate (NaBu), respectively. Myocardial function was serially assessed at 7, 14, 21 weeks following treatments.

Results

Echocardiography demonstrated that cardiac function was depressed in diabetic mice, but HDAC inhibition resulted in a significant functional improvement in STZ-injected mice. Likewise, HDAC inhibition attenuates cardiac hypertrophy, as evidenced by a reduced heart/tibia ratio and areas of cardiomyocytes, which is associated with reduced interstitial fibrosis and decreases in active caspase-3 and apoptotic stainings, but also increased angiogenesis in diabetic myocardium. Notably, glucose transporters (GLUT) 1 and 4 were up-regulated following HDAC inhibition, which was accompanied with increases of GLUT1 acetylation and p38 phosphorylation. Furthermore, myocardial superoxide dismutase, an important antioxidant, was elevated following HDAC inhibition in the diabetic mice.

Conclusion

HDAC inhibition plays a critical role in improving cardiac function and suppressing myocardial remodeling in diabetic heart.
Appendix
Available only for authorised users
Literature
1.
go back to reference Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 23:105–111PubMedCrossRef Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 23:105–111PubMedCrossRef
2.
go back to reference (1999) Diabetes mellitus. A major risk factor for cardiovascular disease: a joint editorial statement by the American Diabetes Association; The National Heart, Lung, and Blood Institute; The Juvenile Diabetes Foundation International; The National Institute of Diabetes and Digestive and Kidney Diseases; and The American Heart Association., Circulation 100:1132–3 (1999) Diabetes mellitus. A major risk factor for cardiovascular disease: a joint editorial statement by the American Diabetes Association; The National Heart, Lung, and Blood Institute; The Juvenile Diabetes Foundation International; The National Institute of Diabetes and Digestive and Kidney Diseases; and The American Heart Association., Circulation 100:1132–3
3.
go back to reference Zhao TC (2013) Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol 12:90PubMedCentralPubMedCrossRef Zhao TC (2013) Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol 12:90PubMedCentralPubMedCrossRef
4.
go back to reference Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602PubMedCrossRef Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602PubMedCrossRef
5.
go back to reference Carugo S, Giannattasio C, Calchera I, Paleari F, Gorgoglione MG, Grappiolo A et al (2001) Progression of functional and structural cardiac alterations in young normotensive uncomplicated patients with type 1 diabetes mellitus. J Hypertens 19:1675–1680PubMedCrossRef Carugo S, Giannattasio C, Calchera I, Paleari F, Gorgoglione MG, Grappiolo A et al (2001) Progression of functional and structural cardiac alterations in young normotensive uncomplicated patients with type 1 diabetes mellitus. J Hypertens 19:1675–1680PubMedCrossRef
6.
go back to reference Itoh S, Ding B, Shishido T, Lerner-Marmarosh N, Wang N, Maekawa N et al (2006) Role of p90 ribosomal S6 kinase-mediated prorenin-converting enzyme in ischemic and diabetic myocardium. Circulation 113:1787–1798PubMedCrossRef Itoh S, Ding B, Shishido T, Lerner-Marmarosh N, Wang N, Maekawa N et al (2006) Role of p90 ribosomal S6 kinase-mediated prorenin-converting enzyme in ischemic and diabetic myocardium. Circulation 113:1787–1798PubMedCrossRef
7.
go back to reference Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56:127–136PubMedCrossRef Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56:127–136PubMedCrossRef
8.
go back to reference Roe ND, Thomas DP, Ren J (2011) Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes Obes Metab 13:465–473PubMedCrossRef Roe ND, Thomas DP, Ren J (2011) Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes Obes Metab 13:465–473PubMedCrossRef
9.
go back to reference Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS et al (2001) IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50:1414–1424PubMedCrossRef Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS et al (2001) IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50:1414–1424PubMedCrossRef
10.
go back to reference Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N et al (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327PubMedCrossRef Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N et al (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327PubMedCrossRef
11.
go back to reference Shiomi T, Matsusaka H, Hayashidani S, Suematsu N, Wen J, Kubota T et al (2003) Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol 42:165–172PubMedCrossRef Shiomi T, Matsusaka H, Hayashidani S, Suematsu N, Wen J, Kubota T et al (2003) Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol 42:165–172PubMedCrossRef
12.
go back to reference Dong B, Yu QT, Dai HY, Gao YY, Zhou ZL, Zhang L et al (2012) Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J Am Coll Cardiol 59:739–747PubMedCrossRef Dong B, Yu QT, Dai HY, Gao YY, Zhou ZL, Zhang L et al (2012) Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J Am Coll Cardiol 59:739–747PubMedCrossRef
13.
go back to reference Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271PubMedCrossRef Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271PubMedCrossRef
14.
15.
go back to reference Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260PubMedCrossRef Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260PubMedCrossRef
16.
go back to reference Wang D, Fang C, Zong NC, Liem DA, Cadeiras M, Scruggs SB et al (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 12:3793–3802PubMedCentralPubMedCrossRef Wang D, Fang C, Zong NC, Liem DA, Cadeiras M, Scruggs SB et al (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 12:3793–3802PubMedCentralPubMedCrossRef
17.
go back to reference Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN et al (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113:2579–2588PubMedCentralPubMedCrossRef Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN et al (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113:2579–2588PubMedCentralPubMedCrossRef
18.
go back to reference Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42PubMedCentralPubMedCrossRef Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42PubMedCentralPubMedCrossRef
19.
go back to reference Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113:51–59PubMedCrossRef Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113:51–59PubMedCrossRef
20.
go back to reference Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T et al (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 22:3549–3560PubMedCentralPubMedCrossRef Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T et al (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 22:3549–3560PubMedCentralPubMedCrossRef
21.
go back to reference Kao YH, Liou JP, Chung CC, Lien GS, Kuo CC, Chen SA et al (2013) Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol 168:4178–4183PubMedCrossRef Kao YH, Liou JP, Chung CC, Lien GS, Kuo CC, Chen SA et al (2013) Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol 168:4178–4183PubMedCrossRef
22.
go back to reference Eom GH, Nam YS, Oh JG, Choe N, Min HK, Yoo EK et al (2014) Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 114:1133–1143PubMedCrossRef Eom GH, Nam YS, Oh JG, Choe N, Min HK, Yoo EK et al (2014) Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 114:1133–1143PubMedCrossRef
23.
go back to reference Zhang L, Qin X, Zhao Y, Fast L, Zhuang S, Liu P et al (2012) Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther 341:285–293PubMedCentralPubMedCrossRef Zhang L, Qin X, Zhao Y, Fast L, Zhuang S, Liu P et al (2012) Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther 341:285–293PubMedCentralPubMedCrossRef
24.
go back to reference Zhang LX, Zhao Y, Cheng G, Guo TL, Chin YE, Liu PY et al (2010) Targeted deletion of NF-kappaB p50 diminishes the cardioprotection of histone deacetylase inhibition. Am J Physiol Heart Circ Physiol 298:H2154–H2163PubMedCentralPubMedCrossRef Zhang LX, Zhao Y, Cheng G, Guo TL, Chin YE, Liu PY et al (2010) Targeted deletion of NF-kappaB p50 diminishes the cardioprotection of histone deacetylase inhibition. Am J Physiol Heart Circ Physiol 298:H2154–H2163PubMedCentralPubMedCrossRef
25.
go back to reference Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76:473–481PubMedCrossRef Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76:473–481PubMedCrossRef
26.
go back to reference Chen HP, Denicola M, Qin X, Zhao Y, Zhang L, Long XL et al (2011) HDAC inhibition promotes cardiogenesis and the survival of embryonic stem cells through proteasome-dependent pathway. J Cell Biochem 112:3246–3255PubMedCentralPubMedCrossRef Chen HP, Denicola M, Qin X, Zhao Y, Zhang L, Long XL et al (2011) HDAC inhibition promotes cardiogenesis and the survival of embryonic stem cells through proteasome-dependent pathway. J Cell Biochem 112:3246–3255PubMedCentralPubMedCrossRef
27.
go back to reference Zhang L, Chen B, Zhao Y, Dubielecka PM, Wei L, Qin GJ et al (2012) Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem 287:39338–39348PubMedCentralPubMedCrossRef Zhang L, Chen B, Zhao Y, Dubielecka PM, Wei L, Qin GJ et al (2012) Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem 287:39338–39348PubMedCentralPubMedCrossRef
28.
go back to reference Cox EJ, Marsh SA (2013) Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 12:101PubMedCentralPubMedCrossRef Cox EJ, Marsh SA (2013) Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 12:101PubMedCentralPubMedCrossRef
29.
go back to reference Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S et al (2010) High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 316:2903–2909PubMedCrossRef Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S et al (2010) High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 316:2903–2909PubMedCrossRef
30.
go back to reference Tsutsui H, Matsushima S, Kinugawa S, Ide T, Inoue N, Ohta Y et al (2007) Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Hypertens Res 30:439–449PubMedCrossRef Tsutsui H, Matsushima S, Kinugawa S, Ide T, Inoue N, Ohta Y et al (2007) Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Hypertens Res 30:439–449PubMedCrossRef
31.
go back to reference Christensen DP, Dahllof M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N et al (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17:378–390PubMedCentralPubMedCrossRef Christensen DP, Dahllof M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N et al (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17:378–390PubMedCentralPubMedCrossRef
32.
go back to reference Patel BM, Raghunathan S, Porwal U (2014) Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. Eur J Pharmacol 728:128–134PubMedCrossRef Patel BM, Raghunathan S, Porwal U (2014) Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. Eur J Pharmacol 728:128–134PubMedCrossRef
33.
go back to reference Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107:1403–1413PubMedCrossRef Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107:1403–1413PubMedCrossRef
34.
go back to reference Asrih M, Steffens S (2013) Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol 22:117–125PubMedCrossRef Asrih M, Steffens S (2013) Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol 22:117–125PubMedCrossRef
35.
go back to reference Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:884–899PubMed Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:884–899PubMed
36.
go back to reference Busche MN, Walsh MC, McMullen ME, Guikema BJ, Stahl GL (2008) Mannose-binding lectin plays a critical role in myocardial ischaemia and reperfusion injury in a mouse model ofdiabetes. Diabetologia 51:1544–1551PubMedCentralPubMedCrossRef Busche MN, Walsh MC, McMullen ME, Guikema BJ, Stahl GL (2008) Mannose-binding lectin plays a critical role in myocardial ischaemia and reperfusion injury in a mouse model ofdiabetes. Diabetologia 51:1544–1551PubMedCentralPubMedCrossRef
37.
go back to reference Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H (2002) Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34:223–231PubMedCrossRef Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H (2002) Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34:223–231PubMedCrossRef
38.
go back to reference Hoit BD, Castro C, Bultron G, Knight S, Matlib MA (1999) Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail 5:324–333PubMedCrossRef Hoit BD, Castro C, Bultron G, Knight S, Matlib MA (1999) Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail 5:324–333PubMedCrossRef
39.
go back to reference Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517PubMedCentralPubMedCrossRef Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517PubMedCentralPubMedCrossRef
40.
go back to reference Zhang LX, DeNicola M, Qin X, Du J, Ma J, Zhao TY et al (2014) Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol 307:C358–C372PubMedCrossRef Zhang LX, DeNicola M, Qin X, Du J, Ma J, Zhao TY et al (2014) Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol 307:C358–C372PubMedCrossRef
41.
go back to reference Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488PubMedCentralPubMedCrossRef Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488PubMedCentralPubMedCrossRef
42.
go back to reference Lieb W, Xanthakis V, Sullivan LM, Aragam J, Pencina MJ, Larson MG et al (2009) Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham offspring study. Circulation 119:3085–3092PubMedCentralPubMedCrossRef Lieb W, Xanthakis V, Sullivan LM, Aragam J, Pencina MJ, Larson MG et al (2009) Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham offspring study. Circulation 119:3085–3092PubMedCentralPubMedCrossRef
43.
go back to reference Taegtmeyer H, McNulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation 105:1727–1733PubMedCrossRef Taegtmeyer H, McNulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation 105:1727–1733PubMedCrossRef
44.
go back to reference Li Y, Ma J, Zhu H, Singh M, Hill D, Greer PA et al (2011) Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes 60:2985–2994PubMedCentralPubMedCrossRef Li Y, Ma J, Zhu H, Singh M, Hill D, Greer PA et al (2011) Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes 60:2985–2994PubMedCentralPubMedCrossRef
45.
go back to reference Bojunga J, Nowak D, Mitrou PS, Hoelzer D, Zeuzem S, Chow KU (2004) Antioxidative treatment prevents activation of death-receptor- and mitochondrion-dependent apoptosis in the hearts of diabetic rats. Diabetologia 47:2072–2080PubMedCrossRef Bojunga J, Nowak D, Mitrou PS, Hoelzer D, Zeuzem S, Chow KU (2004) Antioxidative treatment prevents activation of death-receptor- and mitochondrion-dependent apoptosis in the hearts of diabetic rats. Diabetologia 47:2072–2080PubMedCrossRef
46.
47.
go back to reference Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M et al (2012) p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation. Circ Heart Fail 5:106–115PubMedCrossRef Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M et al (2012) p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation. Circ Heart Fail 5:106–115PubMedCrossRef
48.
go back to reference Kuo WW, Wang WJ, Tsai CY, Way CL, Hsu HH, Chen LM (2013) Diallyl trisufide (DATS) suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFκB signaling via attenuating ROS generation. Int J Cardiol 168:270–280PubMedCrossRef Kuo WW, Wang WJ, Tsai CY, Way CL, Hsu HH, Chen LM (2013) Diallyl trisufide (DATS) suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFκB signaling via attenuating ROS generation. Int J Cardiol 168:270–280PubMedCrossRef
49.
go back to reference Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U et al (2014) Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 13:100PubMedCentralPubMedCrossRef Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U et al (2014) Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 13:100PubMedCentralPubMedCrossRef
50.
go back to reference Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72:369–417PubMed Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72:369–417PubMed
51.
go back to reference Samuel SM, Thirunavukkarasu M, Penumathsa SV, Koneru S, Zhan L, Maulik G et al (2010) Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation 121:1244–1255PubMedCentralPubMedCrossRef Samuel SM, Thirunavukkarasu M, Penumathsa SV, Koneru S, Zhan L, Maulik G et al (2010) Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation 121:1244–1255PubMedCentralPubMedCrossRef
52.
go back to reference Khazaei M, Fallahzadeh AR, Sharifi MR, Afsharmoghaddam N, Javanmard SH, Salehi E (2011) Effects of diabetes on myocardial capillary density and serum angiogenesis biomarkers in male rats. Clinics (Sao Paulo) 66:1419–1424CrossRef Khazaei M, Fallahzadeh AR, Sharifi MR, Afsharmoghaddam N, Javanmard SH, Salehi E (2011) Effects of diabetes on myocardial capillary density and serum angiogenesis biomarkers in male rats. Clinics (Sao Paulo) 66:1419–1424CrossRef
53.
go back to reference Kainulainen H, Breiner M, Schurmann A, Marttinen A, Virjo A, Joost HG (1994) In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1225:275–282PubMedCrossRef Kainulainen H, Breiner M, Schurmann A, Marttinen A, Virjo A, Joost HG (1994) In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1225:275–282PubMedCrossRef
54.
go back to reference Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT et al (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317:1106–1113PubMedCrossRef Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT et al (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317:1106–1113PubMedCrossRef
55.
go back to reference Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S (2014) Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc Diabetol 13:118PubMedCentralPubMedCrossRef Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S (2014) Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc Diabetol 13:118PubMedCentralPubMedCrossRef
56.
go back to reference DeNicola M, Du J, Wang Z, Yano N, Zhang L, Wang Y et al (2014) Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium. Am J Physiol Endocrinol Metab 307:E630–E643PubMedCrossRef DeNicola M, Du J, Wang Z, Yano N, Zhang L, Wang Y et al (2014) Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium. Am J Physiol Endocrinol Metab 307:E630–E643PubMedCrossRef
57.
go back to reference Han P, Li W, Lin CH, Yang J, Shang C, Nurnberg ST et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106PubMedCentralPubMedCrossRef Han P, Li W, Lin CH, Yang J, Shang C, Nurnberg ST et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106PubMedCentralPubMedCrossRef
Metadata
Title
Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice
Authors
Youfang Chen
Jianfeng Du
Yu Tina Zhao
Ling Zhang
Guorong Lv
Shougang Zhuang
Gangjian Qin
Ting C Zhao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2015
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-015-0262-8

Other articles of this Issue 1/2015

Cardiovascular Diabetology 1/2015 Go to the issue