Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2013

Open Access 01-12-2013 | Review

Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection

Author: Ting C Zhao

Published in: Cardiovascular Diabetology | Issue 1/2013

Login to get access

Abstract

Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family implicated in the control of appetite and satiety. GLP-1 has insulinotropic, insulinomimetic, and glucagonostatic effects, thereby exerting multiple complementary actions to lower blood glucose in subjects with type 2 diabetes mellitus. A major advantage over conventional insulin is the fact that the insulinotropic actions of GLP-1 are dependent upon ambient glucose concentration, mitigating the risks of hypoglycemia. Recently, the crucial role of GLP-1 in cardiovascular disease has been suggested in both preclinical and clinical studies. The experimental data indicate GLP-1 and its analogs to have direct effects on the cardiovascular system, in addition to their classic glucoregulatory actions. Clinically, beneficial effects of GLP-1 have also been demonstrated in patients with myocardial ischemia and heart failure. GLP-1 has recently been demonstrated to be a more effective alternative in treating myocardial injury. This paper provides a review on the current evidence supporting the use of GLP-1 in experimental animal models and human trials with the ischemic and non-ischemic heart and discusses their molecular mechanisms and potential as a new therapeutic approach.
Appendix
Available only for authorised users
Literature
1.
go back to reference Phillips K, Luk A, Soor GS, Abraham JR, Leong S, Butany J: Cocaine cardiotoxicity: a review of the pathophysiology, pathology, and treatment options. Am J Cardiovasc Drugs. 2009, 9 (3): 177-196. 10.1007/BF03256574.CrossRefPubMed Phillips K, Luk A, Soor GS, Abraham JR, Leong S, Butany J: Cocaine cardiotoxicity: a review of the pathophysiology, pathology, and treatment options. Am J Cardiovasc Drugs. 2009, 9 (3): 177-196. 10.1007/BF03256574.CrossRefPubMed
2.
go back to reference Eltzschig HK, Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011, 17 (11): 1391-1401. 10.1038/nm.2507.CrossRefPubMed Eltzschig HK, Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011, 17 (11): 1391-1401. 10.1038/nm.2507.CrossRefPubMed
3.
go back to reference Kostis JB, Sanders M: The association of heart failure with insulin resistance and the development of type 2 diabetes. Am J Hypertens. 2005, 18 (5 Pt 1): 731-737.CrossRefPubMed Kostis JB, Sanders M: The association of heart failure with insulin resistance and the development of type 2 diabetes. Am J Hypertens. 2005, 18 (5 Pt 1): 731-737.CrossRefPubMed
4.
go back to reference Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, Stevenson JC, Coats AJJ: Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. Am Coll Cardiol. 1997, 30 (2): 527-532. 10.1016/S0735-1097(97)00185-X.CrossRef Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, Stevenson JC, Coats AJJ: Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. Am Coll Cardiol. 1997, 30 (2): 527-532. 10.1016/S0735-1097(97)00185-X.CrossRef
5.
go back to reference Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004, 109 (8): 962-965. 10.1161/01.CIR.0000120505.91348.58.CrossRefPubMed Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004, 109 (8): 962-965. 10.1161/01.CIR.0000120505.91348.58.CrossRefPubMed
6.
go back to reference Drucker DJ: Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003, 17 (2): 161-171. 10.1210/me.2002-0306.CrossRefPubMed Drucker DJ: Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003, 17 (2): 161-171. 10.1210/me.2002-0306.CrossRefPubMed
7.
go back to reference Drucker DJ: Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology. 2002, 122 (2): 531-544. 10.1053/gast.2002.31068.CrossRefPubMed Drucker DJ: Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology. 2002, 122 (2): 531-544. 10.1053/gast.2002.31068.CrossRefPubMed
8.
go back to reference Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, Parker TG, Huang Q, Drucker DJ, Husain M: Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology. 2003, 144 (6): 2242-2252. 10.1210/en.2003-0007.CrossRefPubMed Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, Parker TG, Huang Q, Drucker DJ, Husain M: Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology. 2003, 144 (6): 2242-2252. 10.1210/en.2003-0007.CrossRefPubMed
9.
go back to reference Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M: Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes. 2001, 50 (10): 2237-2243. 10.2337/diabetes.50.10.2237.CrossRefPubMed Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M: Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes. 2001, 50 (10): 2237-2243. 10.2337/diabetes.50.10.2237.CrossRefPubMed
10.
go back to reference Friedrichsen BN, Neubauer N, Lee YC, Gram VK, Blume N, Petersen JS, Nielsen JH, Møldrup A: Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol. 2006, 188 (3): 481-492. 10.1677/joe.1.06160.CrossRefPubMed Friedrichsen BN, Neubauer N, Lee YC, Gram VK, Blume N, Petersen JS, Nielsen JH, Møldrup A: Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol. 2006, 188 (3): 481-492. 10.1677/joe.1.06160.CrossRefPubMed
11.
go back to reference Stoffers DA, Desai BM, DeLeon DD, Simmons RA: Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes. 2003, 52 (3): 734-740. 10.2337/diabetes.52.3.734.CrossRefPubMed Stoffers DA, Desai BM, DeLeon DD, Simmons RA: Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes. 2003, 52 (3): 734-740. 10.2337/diabetes.52.3.734.CrossRefPubMed
12.
go back to reference Bullock BP, Heller RS, Habener JF: Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology. 1996, 137 (7): 2968-2978. 10.1210/en.137.7.2968.PubMed Bullock BP, Heller RS, Habener JF: Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology. 1996, 137 (7): 2968-2978. 10.1210/en.137.7.2968.PubMed
13.
go back to reference Vila Petroff MG, Egan JM, Wang X, Sollott SJ: Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res. 2001, 89 (5): 445-452. 10.1161/hh1701.095716.CrossRefPubMed Vila Petroff MG, Egan JM, Wang X, Sollott SJ: Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res. 2001, 89 (5): 445-452. 10.1161/hh1701.095716.CrossRefPubMed
14.
go back to reference Wei Y, Mojsov S: Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 1995, 358 (3): 219-224. 10.1016/0014-5793(94)01430-9.CrossRefPubMed Wei Y, Mojsov S: Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 1995, 358 (3): 219-224. 10.1016/0014-5793(94)01430-9.CrossRefPubMed
15.
go back to reference Brubaker PL, Drucker DJ: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology. 2004, 145 (6): 2653-2659. 10.1210/en.2004-0015.CrossRefPubMed Brubaker PL, Drucker DJ: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology. 2004, 145 (6): 2653-2659. 10.1210/en.2004-0015.CrossRefPubMed
16.
go back to reference Reaven GM: Role of insulin resistance in human disease. Diabetes. 1988, 37: 1595-1607. 10.2337/diabetes.37.12.1595.CrossRefPubMed Reaven GM: Role of insulin resistance in human disease. Diabetes. 1988, 37: 1595-1607. 10.2337/diabetes.37.12.1595.CrossRefPubMed
17.
go back to reference Opie LH: The heart, physiology and metabolism. 1991, New York: Raven Opie LH: The heart, physiology and metabolism. 1991, New York: Raven
18.
go back to reference Oliver MF, Opie LH: Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet. 1994, 343: 155-158. 10.1016/S0140-6736(94)90939-3.CrossRefPubMed Oliver MF, Opie LH: Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet. 1994, 343: 155-158. 10.1016/S0140-6736(94)90939-3.CrossRefPubMed
19.
go back to reference Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, Stevenson JC, Coats AJ: Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997, 30 (2): 527-532. 10.1016/S0735-1097(97)00185-X.CrossRefPubMed Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, Stevenson JC, Coats AJ: Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997, 30 (2): 527-532. 10.1016/S0735-1097(97)00185-X.CrossRefPubMed
20.
go back to reference Levantesi G, Macchia A, Marfisi RM, Franzosi MG, Maggioni AP, Nicolosi GL, Schweiger C, Tavazzi L, Tognoni G, Valagussa F, Marchioli R, on behalf of the GISSI-Prevenzione Investigators: Metabolic syndrome and risk of cardiovascular events after myocardial infarction. J Am Coll Cardiol. 2005, 46: 277-283. 10.1016/j.jacc.2005.03.062.CrossRefPubMed Levantesi G, Macchia A, Marfisi RM, Franzosi MG, Maggioni AP, Nicolosi GL, Schweiger C, Tavazzi L, Tognoni G, Valagussa F, Marchioli R, on behalf of the GISSI-Prevenzione Investigators: Metabolic syndrome and risk of cardiovascular events after myocardial infarction. J Am Coll Cardiol. 2005, 46: 277-283. 10.1016/j.jacc.2005.03.062.CrossRefPubMed
21.
go back to reference Paternostro G, Clarke K, Heath J, Seymour AM, Radda GK: Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res. 1995, 30 (2): 205-211.CrossRefPubMed Paternostro G, Clarke K, Heath J, Seymour AM, Radda GK: Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res. 1995, 30 (2): 205-211.CrossRefPubMed
22.
go back to reference Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK: Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002, 110 (1): 43-52.PubMedCentralCrossRefPubMed Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK: Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002, 110 (1): 43-52.PubMedCentralCrossRefPubMed
23.
go back to reference Barragán JM, Rodríguez RE, Eng J, Blázquez E: Interactions of exendin-[9-39] with the effects of glucagon-like peptide-1-[7-36] amide and of exendin-4 on arterial blood pressure and heart rate in rats. Regul Pept. 1996, 67 (1): 63-68. 10.1016/S0167-0115(96)00113-9.CrossRefPubMed Barragán JM, Rodríguez RE, Eng J, Blázquez E: Interactions of exendin-[9-39] with the effects of glucagon-like peptide-1-[7-36] amide and of exendin-4 on arterial blood pressure and heart rate in rats. Regul Pept. 1996, 67 (1): 63-68. 10.1016/S0167-0115(96)00113-9.CrossRefPubMed
24.
go back to reference Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Maher TD, Dean DA, Bailey SH, Marrone G, Benckart DH, Elahi D, Shannon RP: Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007, 100 (5): 824-829. 10.1016/j.amjcard.2007.05.022.CrossRefPubMed Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Maher TD, Dean DA, Bailey SH, Marrone G, Benckart DH, Elahi D, Shannon RP: Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007, 100 (5): 824-829. 10.1016/j.amjcard.2007.05.022.CrossRefPubMed
25.
go back to reference Nikolaidis L, Elahi D, Shen Y, Shannon RP: Active metabolite of GLP-1 mediates myocardial glucose uptake and improves ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005, 289 (6): H2401-H2408. 10.1152/ajpheart.00347.2005.CrossRefPubMed Nikolaidis L, Elahi D, Shen Y, Shannon RP: Active metabolite of GLP-1 mediates myocardial glucose uptake and improves ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005, 289 (6): H2401-H2408. 10.1152/ajpheart.00347.2005.CrossRefPubMed
26.
go back to reference Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT, Shannon RP: Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006, 317 (3): 1106-1113. 10.1124/jpet.106.100982.CrossRefPubMed Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT, Shannon RP: Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006, 317 (3): 1106-1113. 10.1124/jpet.106.100982.CrossRefPubMed
27.
go back to reference Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM: Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005, 54 (1): 146-151. 10.2337/diabetes.54.1.146.CrossRefPubMed Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM: Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005, 54 (1): 146-151. 10.2337/diabetes.54.1.146.CrossRefPubMed
28.
go back to reference Kavianipour M, Ehlers MR, Malmberg K, Ronquist G, Ryden L, Wikstrom G, Gutniak M: Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides. 2003, 24: 569-578. 10.1016/S0196-9781(03)00108-6.CrossRefPubMed Kavianipour M, Ehlers MR, Malmberg K, Ronquist G, Ryden L, Wikstrom G, Gutniak M: Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides. 2003, 24: 569-578. 10.1016/S0196-9781(03)00108-6.CrossRefPubMed
29.
go back to reference Mentlein R, Gallwitz B, Schmidt WE: Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993, 214: 829-835. 10.1111/j.1432-1033.1993.tb17986.x.CrossRefPubMed Mentlein R, Gallwitz B, Schmidt WE: Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993, 214: 829-835. 10.1111/j.1432-1033.1993.tb17986.x.CrossRefPubMed
30.
go back to reference Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP: Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006, 12 (9): 694-699. 10.1016/j.cardfail.2006.08.211.CrossRefPubMed Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP: Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006, 12 (9): 694-699. 10.1016/j.cardfail.2006.08.211.CrossRefPubMed
31.
go back to reference Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NE, Dutka DP: A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv. 2011, 4 (3): 266-272. 10.1161/CIRCINTERVENTIONS.110.960476.CrossRefPubMed Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NE, Dutka DP: A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv. 2011, 4 (3): 266-272. 10.1161/CIRCINTERVENTIONS.110.960476.CrossRefPubMed
32.
go back to reference Read PA, Khan FZ, Dutka DP: Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart. 2012, 98 (5): 408-413. 10.1136/hrt.2010.219345.CrossRefPubMed Read PA, Khan FZ, Dutka DP: Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart. 2012, 98 (5): 408-413. 10.1136/hrt.2010.219345.CrossRefPubMed
33.
go back to reference Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP: Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008, 1 (3): 153-160. 10.1161/CIRCHEARTFAILURE.108.766402.PubMedCentralCrossRefPubMed Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP: Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008, 1 (3): 153-160. 10.1161/CIRCHEARTFAILURE.108.766402.PubMedCentralCrossRefPubMed
34.
go back to reference Yu M, Moreno C, Hoagland KM, Dahly A, Ditter K, Mistry M, Roman RJ: Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens. 2003, 6: 1125-1135.CrossRef Yu M, Moreno C, Hoagland KM, Dahly A, Ditter K, Mistry M, Roman RJ: Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens. 2003, 6: 1125-1135.CrossRef
35.
go back to reference Liu Q, Adams L, Broyde A, Fernandez R, Baron AD, Parkes DG: The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovasc Diabetol. 2010, 9 (1): 32-10.1186/1475-2840-9-32.PubMedCentralCrossRefPubMed Liu Q, Adams L, Broyde A, Fernandez R, Baron AD, Parkes DG: The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovasc Diabetol. 2010, 9 (1): 32-10.1186/1475-2840-9-32.PubMedCentralCrossRefPubMed
36.
go back to reference Pacheco BP, Crajoinas RO, Couto GK, Davel AP, Lessa LM, Rossoni LV, Girardi AC: Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens. 2011, 29 (3): 520-528. 10.1097/HJH.0b013e328341939d.CrossRefPubMed Pacheco BP, Crajoinas RO, Couto GK, Davel AP, Lessa LM, Rossoni LV, Girardi AC: Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens. 2011, 29 (3): 520-528. 10.1097/HJH.0b013e328341939d.CrossRefPubMed
37.
go back to reference Okerson T, Yan P, Stonehouse A, Brodows R: Effects of exenatide on systolic blood pressure in subjects with type 2 diabetes. Am J Hypertens. 2010, 23 (3): 334-339. 10.1038/ajh.2009.245.CrossRefPubMed Okerson T, Yan P, Stonehouse A, Brodows R: Effects of exenatide on systolic blood pressure in subjects with type 2 diabetes. Am J Hypertens. 2010, 23 (3): 334-339. 10.1038/ajh.2009.245.CrossRefPubMed
38.
go back to reference Blonde L, Russell-Jones D: The safety and efficacy of liraglutide with or without oral antidiabetic drug therapy in type 2 diabetes: an overview of the LEAD 1–5 studies. Diabet Obes Metab. 2009, 11 (suppl3): 26-34.CrossRef Blonde L, Russell-Jones D: The safety and efficacy of liraglutide with or without oral antidiabetic drug therapy in type 2 diabetes: an overview of the LEAD 1–5 studies. Diabet Obes Metab. 2009, 11 (suppl3): 26-34.CrossRef
39.
go back to reference Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nature Med. 2013, 19 (5): 567-575. 10.1038/nm.3128.CrossRefPubMed Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nature Med. 2013, 19 (5): 567-575. 10.1038/nm.3128.CrossRefPubMed
40.
go back to reference Bender SB, McGraw AP, Jaffe IZ, Sowers JR: Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease?. Diabetes. 2013, 62 (2): 313-319. 10.2337/db12-0905.PubMedCentralCrossRefPubMed Bender SB, McGraw AP, Jaffe IZ, Sowers JR: Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease?. Diabetes. 2013, 62 (2): 313-319. 10.2337/db12-0905.PubMedCentralCrossRefPubMed
41.
go back to reference Asghar O, Alam U, Hayat SA, Aghamohammadzadeh R, Heagerty AM, Malik RA: Obesity, diabetes and atrial fibrillation; epidemiology, mechanisms and interventions. Curr Cardiol Rev. 2012, 8 (4): 253-264. 10.2174/157340312803760749.PubMedCentralCrossRefPubMed Asghar O, Alam U, Hayat SA, Aghamohammadzadeh R, Heagerty AM, Malik RA: Obesity, diabetes and atrial fibrillation; epidemiology, mechanisms and interventions. Curr Cardiol Rev. 2012, 8 (4): 253-264. 10.2174/157340312803760749.PubMedCentralCrossRefPubMed
42.
go back to reference Li CJ, Li J, Zhang QM, Lv L, Chen R, Lv CF, Yu P, Yu DM: Efficacy and safety comparison between liraglutide as add-on therapy to insulin and insulin dose-increase in Chinese subjects with poorly controlled type 2 diabetes and abdominal obesity. Cardiovasc Diabetol. 2012, 11: 142-10.1186/1475-2840-11-142.PubMedCentralCrossRefPubMed Li CJ, Li J, Zhang QM, Lv L, Chen R, Lv CF, Yu P, Yu DM: Efficacy and safety comparison between liraglutide as add-on therapy to insulin and insulin dose-increase in Chinese subjects with poorly controlled type 2 diabetes and abdominal obesity. Cardiovasc Diabetol. 2012, 11: 142-10.1186/1475-2840-11-142.PubMedCentralCrossRefPubMed
43.
go back to reference Fujishima Y, Maeda N, Inoue K, Kashine S, Nishizawa H, Hirata A, Kozawa J, Yasuda T, Okita K, Imagawa A, Funahashi T, Shimomura I: Efficacy of liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, on body weight, eating behavior, and glycemic control, in Japanese obese type 2 diabetes. Cardiovasc Diabetol. 2012, 11: 107-10.1186/1475-2840-11-107.PubMedCentralCrossRefPubMed Fujishima Y, Maeda N, Inoue K, Kashine S, Nishizawa H, Hirata A, Kozawa J, Yasuda T, Okita K, Imagawa A, Funahashi T, Shimomura I: Efficacy of liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, on body weight, eating behavior, and glycemic control, in Japanese obese type 2 diabetes. Cardiovasc Diabetol. 2012, 11: 107-10.1186/1475-2840-11-107.PubMedCentralCrossRefPubMed
44.
go back to reference Inoue K, Maeda N, Kashine S, Fujishima Y, Kozawa J, Hiuge-Shimizu A, Okita K, Imagawa A, Funahashi T, Shimomura I: Short-term effects of liraglutide on visceral fat adiposity, appetite, and food preference: a pilot study of obese Japanese patients with type 2 diabetes. Cardiovasc Diabetol. 2011, 10: 109-10.1186/1475-2840-10-109.PubMedCentralCrossRefPubMed Inoue K, Maeda N, Kashine S, Fujishima Y, Kozawa J, Hiuge-Shimizu A, Okita K, Imagawa A, Funahashi T, Shimomura I: Short-term effects of liraglutide on visceral fat adiposity, appetite, and food preference: a pilot study of obese Japanese patients with type 2 diabetes. Cardiovasc Diabetol. 2011, 10: 109-10.1186/1475-2840-10-109.PubMedCentralCrossRefPubMed
45.
go back to reference Kelly AS, Bergenstal RM, Gonzalez-Campoy JM, Katz H, Bank AJ: Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc Diabetol. 2012, 11: 64-10.1186/1475-2840-11-64.PubMedCentralCrossRefPubMed Kelly AS, Bergenstal RM, Gonzalez-Campoy JM, Katz H, Bank AJ: Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc Diabetol. 2012, 11: 64-10.1186/1475-2840-11-64.PubMedCentralCrossRefPubMed
46.
go back to reference Cobb M, Goldsmith EJ: How MAP kinases are regulated. J Biol Chem. 1995, 270: 14843-14846. 10.1074/jbc.270.25.14843.CrossRefPubMed Cobb M, Goldsmith EJ: How MAP kinases are regulated. J Biol Chem. 1995, 270: 14843-14846. 10.1074/jbc.270.25.14843.CrossRefPubMed
47.
go back to reference Hill CS, Treisman R: Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995, 80: 199-211. 10.1016/0092-8674(95)90403-4.CrossRefPubMed Hill CS, Treisman R: Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995, 80: 199-211. 10.1016/0092-8674(95)90403-4.CrossRefPubMed
48.
go back to reference Rose BA, Force T, Wang Y: Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010, 90 (4): 1507-1546. 10.1152/physrev.00054.2009.CrossRefPubMed Rose BA, Force T, Wang Y: Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010, 90 (4): 1507-1546. 10.1152/physrev.00054.2009.CrossRefPubMed
49.
go back to reference Nishida E, Gotoh Y: The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci. 1993, 18: 128-131. 10.1016/0968-0004(93)90019-J.CrossRefPubMed Nishida E, Gotoh Y: The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci. 1993, 18: 128-131. 10.1016/0968-0004(93)90019-J.CrossRefPubMed
50.
go back to reference Zhao TC, Hines DS, Kukreja RC: Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial KATP channels. Am J Physiol Heart Circ Physiol. 2001, 280: H1278-H1285.PubMed Zhao TC, Hines DS, Kukreja RC: Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial KATP channels. Am J Physiol Heart Circ Physiol. 2001, 280: H1278-H1285.PubMed
51.
go back to reference Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998, 273 (4): 2161-2168. 10.1074/jbc.273.4.2161.CrossRefPubMed Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998, 273 (4): 2161-2168. 10.1074/jbc.273.4.2161.CrossRefPubMed
52.
go back to reference Zhao TC, Taher MM, Valerie KC, Kukreja RC: p38 Triggers late preconditioning elicited by anisomycin in heart: involvement of NF-kappaB and iNOS. Circ Res. 2001, 89: 915-922. 10.1161/hh2201.099452.CrossRefPubMed Zhao TC, Taher MM, Valerie KC, Kukreja RC: p38 Triggers late preconditioning elicited by anisomycin in heart: involvement of NF-kappaB and iNOS. Circ Res. 2001, 89: 915-922. 10.1161/hh2201.099452.CrossRefPubMed
53.
go back to reference Martindale JJ, Wall JA, Martinez-Longoria DM, Aryal P, Rockman HA, Guo Y, Bolli R, Glembotski CC: Overexpression of mitogen-activated protein kinase kinase 6 in the heart improves functional recovery from ischemia in vitro and protects against myocardial infarction in vivo. J Biol Chem. 2005, 280: 669-676.PubMedCentralCrossRefPubMed Martindale JJ, Wall JA, Martinez-Longoria DM, Aryal P, Rockman HA, Guo Y, Bolli R, Glembotski CC: Overexpression of mitogen-activated protein kinase kinase 6 in the heart improves functional recovery from ischemia in vitro and protects against myocardial infarction in vivo. J Biol Chem. 2005, 280: 669-676.PubMedCentralCrossRefPubMed
54.
go back to reference Peart JN, Gross ER, Headrick JP, Gross GJ: Impaired p38 MAPK/HSP27 signaling underlies aging-related failure in opioid-mediated cardioprotection. J Mol Cell Cardiol. 2007, 42: 972-980. 10.1016/j.yjmcc.2007.02.011.PubMedCentralCrossRefPubMed Peart JN, Gross ER, Headrick JP, Gross GJ: Impaired p38 MAPK/HSP27 signaling underlies aging-related failure in opioid-mediated cardioprotection. J Mol Cell Cardiol. 2007, 42: 972-980. 10.1016/j.yjmcc.2007.02.011.PubMedCentralCrossRefPubMed
55.
go back to reference Dana A, Skarli M, Papakrivopoulou J, Yellon DM: Adenosine A(1) receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res. 2000, 86: 989-997. 10.1161/01.RES.86.9.989.CrossRefPubMed Dana A, Skarli M, Papakrivopoulou J, Yellon DM: Adenosine A(1) receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res. 2000, 86: 989-997. 10.1161/01.RES.86.9.989.CrossRefPubMed
56.
go back to reference Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G: p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res. 2002, 55: 690-700. 10.1016/S0008-6363(02)00319-X.CrossRefPubMed Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G: p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res. 2002, 55: 690-700. 10.1016/S0008-6363(02)00319-X.CrossRefPubMed
57.
go back to reference Haq SE, Clerk A, Sugden PH: Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart. FEBS Lett. 1998, 434: 305-308. 10.1016/S0014-5793(98)01000-X.CrossRefPubMed Haq SE, Clerk A, Sugden PH: Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart. FEBS Lett. 1998, 434: 305-308. 10.1016/S0014-5793(98)01000-X.CrossRefPubMed
58.
go back to reference Kabir AM, Cao X, Gorog DA, Tanno M, Bassi R, Bellahcene M, Quinlan RA, Davis RJ, Flavell RA, Shattock MJ, Marber MS: Antimycin A induced cardioprotection is dependent on pre-ischemic p38-MAPK activation but independent of MKK3. J Mol Cell Cardiol. 2005, 39: 709-717. 10.1016/j.yjmcc.2005.07.012.CrossRefPubMed Kabir AM, Cao X, Gorog DA, Tanno M, Bassi R, Bellahcene M, Quinlan RA, Davis RJ, Flavell RA, Shattock MJ, Marber MS: Antimycin A induced cardioprotection is dependent on pre-ischemic p38-MAPK activation but independent of MKK3. J Mol Cell Cardiol. 2005, 39: 709-717. 10.1016/j.yjmcc.2005.07.012.CrossRefPubMed
59.
go back to reference Martin JL, Avkiran M, Quinlan RA, Cohen P, Marber MS: Antiischemic effects of SB203580 are mediated through the inhibition of p38alpha mitogen-activated protein kinase: Evidence from ectopic expression of an inhibition-resistant kinase. Circ Res. 2001, 89: 750-752. 10.1161/hh2101.099504.CrossRefPubMed Martin JL, Avkiran M, Quinlan RA, Cohen P, Marber MS: Antiischemic effects of SB203580 are mediated through the inhibition of p38alpha mitogen-activated protein kinase: Evidence from ectopic expression of an inhibition-resistant kinase. Circ Res. 2001, 89: 750-752. 10.1161/hh2101.099504.CrossRefPubMed
60.
go back to reference Sun HY, Wang NP, Halkos M, Kerendi F, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ: Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis. 2006, 11: 1583-1593. 10.1007/s10495-006-9037-8.CrossRefPubMed Sun HY, Wang NP, Halkos M, Kerendi F, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ: Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis. 2006, 11: 1583-1593. 10.1007/s10495-006-9037-8.CrossRefPubMed
61.
go back to reference Ma XL, Kumar S, Louden CS, Lopez BL, Christoper TA, Wang C, Lee JC, Feuerstein GZ, Yue TL: Inhibition of p38 mitogen-activated protein kinase decrease cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation. 1999, 99: 1685-1691. 10.1161/01.CIR.99.13.1685.CrossRefPubMed Ma XL, Kumar S, Louden CS, Lopez BL, Christoper TA, Wang C, Lee JC, Feuerstein GZ, Yue TL: Inhibition of p38 mitogen-activated protein kinase decrease cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation. 1999, 99: 1685-1691. 10.1161/01.CIR.99.13.1685.CrossRefPubMed
62.
go back to reference Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF, Molkentin JD: Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J Biol Chem. 2004, 279: 15524-15530. 10.1074/jbc.M313717200.CrossRefPubMed Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF, Molkentin JD: Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J Biol Chem. 2004, 279: 15524-15530. 10.1074/jbc.M313717200.CrossRefPubMed
63.
go back to reference Otsu K, Yamashita N, Nishida K, Hirotani S, Yamaguchi O, Watanabe T, Hikoso S, Higuchi Y, Matsumura Y, Maruyama M, Sudo T, Osada H, Hori M: Disruption of a single copy of the p38alpha MAP kinase gene leads to cardioprotection against ischemia-reperfusion. Biochem Biophys Res Commun. 2003, 302: 56-60. 10.1016/S0006-291X(03)00096-2.CrossRefPubMed Otsu K, Yamashita N, Nishida K, Hirotani S, Yamaguchi O, Watanabe T, Hikoso S, Higuchi Y, Matsumura Y, Maruyama M, Sudo T, Osada H, Hori M: Disruption of a single copy of the p38alpha MAP kinase gene leads to cardioprotection against ischemia-reperfusion. Biochem Biophys Res Commun. 2003, 302: 56-60. 10.1016/S0006-291X(03)00096-2.CrossRefPubMed
64.
go back to reference Liu J, Sadoshima J, Zhai P, Hong C, Yang G, Chen W, Yan L, Wang Y, Vatner SF, Vatner DE: Pressure overload induces greater hypertrophy and mortality in female mice with p38alpha MAPK inhibition. J Mol Cell Cardiol. 2006, 41 (4): 680-688. 10.1016/j.yjmcc.2006.07.007.CrossRefPubMed Liu J, Sadoshima J, Zhai P, Hong C, Yang G, Chen W, Yan L, Wang Y, Vatner SF, Vatner DE: Pressure overload induces greater hypertrophy and mortality in female mice with p38alpha MAPK inhibition. J Mol Cell Cardiol. 2006, 41 (4): 680-688. 10.1016/j.yjmcc.2006.07.007.CrossRefPubMed
65.
go back to reference Muslin AJ: MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond). 2008, 115 (7): 203-218. 10.1042/CS20070430.CrossRef Muslin AJ: MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond). 2008, 115 (7): 203-218. 10.1042/CS20070430.CrossRef
66.
go back to reference Ping P, Murphy E: Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase?. Circ Res. 2000, 86: 921-922. 10.1161/01.RES.86.9.921.CrossRefPubMed Ping P, Murphy E: Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase?. Circ Res. 2000, 86: 921-922. 10.1161/01.RES.86.9.921.CrossRefPubMed
67.
go back to reference Steenbergen C: The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning. Basic Res Cardiol. 2002, 97: 276-285. 10.1007/s00395-002-0364-9.CrossRefPubMed Steenbergen C: The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning. Basic Res Cardiol. 2002, 97: 276-285. 10.1007/s00395-002-0364-9.CrossRefPubMed
68.
go back to reference Sugden PH, Clerk A: “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998, 83: 345-352. 10.1161/01.RES.83.4.345.CrossRefPubMed Sugden PH, Clerk A: “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998, 83: 345-352. 10.1161/01.RES.83.4.345.CrossRefPubMed
69.
go back to reference Bose AK, Mocanu MM, Carr RD, Yellon DM: Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway. Cardiovasc Drugs Ther. 2007, 21 (4): 253-256. 10.1007/s10557-007-6030-6.CrossRefPubMed Bose AK, Mocanu MM, Carr RD, Yellon DM: Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway. Cardiovasc Drugs Ther. 2007, 21 (4): 253-256. 10.1007/s10557-007-6030-6.CrossRefPubMed
70.
go back to reference Doyle ME, Egan JM: Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007, 113 (3): 546-593. 10.1016/j.pharmthera.2006.11.007.PubMedCentralCrossRefPubMed Doyle ME, Egan JM: Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007, 113 (3): 546-593. 10.1016/j.pharmthera.2006.11.007.PubMedCentralCrossRefPubMed
71.
go back to reference Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008, 117 (18): 2340-2350. 10.1161/CIRCULATIONAHA.107.739938.CrossRefPubMed Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008, 117 (18): 2340-2350. 10.1161/CIRCULATIONAHA.107.739938.CrossRefPubMed
72.
go back to reference Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO: Vasorelaxant effect of glucagon-like peptide-(7–36)amide and amylin on the pulmonary circulation of the rat. Regul Pept. 2001, 102 (2–3): 81-86.CrossRefPubMed Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO: Vasorelaxant effect of glucagon-like peptide-(7–36)amide and amylin on the pulmonary circulation of the rat. Regul Pept. 2001, 102 (2–3): 81-86.CrossRefPubMed
73.
go back to reference Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ: GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys. 2008, 478 (2): 136-142. 10.1016/j.abb.2008.08.001.CrossRefPubMed Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ: GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys. 2008, 478 (2): 136-142. 10.1016/j.abb.2008.08.001.CrossRefPubMed
74.
go back to reference Nyström T, Gonon AT, Sjöholm A, Pernow J: Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005, 125 (1–3): 173-177.CrossRefPubMed Nyström T, Gonon AT, Sjöholm A, Pernow J: Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005, 125 (1–3): 173-177.CrossRefPubMed
75.
go back to reference Toth A, Nickson P, Mandl A, Bannister ML, Toth K, Erhardt P: Endoplasmic reticulum stress as a novel therapeutic target in heart diseases. Cardiovasc Hematol Disord Drug Targets. 2007, 7 (3): 205-218. 10.2174/187152907781745260.CrossRefPubMed Toth A, Nickson P, Mandl A, Bannister ML, Toth K, Erhardt P: Endoplasmic reticulum stress as a novel therapeutic target in heart diseases. Cardiovasc Hematol Disord Drug Targets. 2007, 7 (3): 205-218. 10.2174/187152907781745260.CrossRefPubMed
76.
go back to reference Popov D: Endoplasmic reticulum stress and the on site function of resident PTP1B. Biochem Biophys Res Commun. 2012, 422 (4): 535-538. 10.1016/j.bbrc.2012.05.048.CrossRefPubMed Popov D: Endoplasmic reticulum stress and the on site function of resident PTP1B. Biochem Biophys Res Commun. 2012, 422 (4): 535-538. 10.1016/j.bbrc.2012.05.048.CrossRefPubMed
77.
go back to reference Gray S, Kim JK: New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab. 2011, 22 (10): 394-403. 10.1016/j.tem.2011.05.001.PubMedCentralCrossRefPubMed Gray S, Kim JK: New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab. 2011, 22 (10): 394-403. 10.1016/j.tem.2011.05.001.PubMedCentralCrossRefPubMed
78.
go back to reference Liu J, Liu Y, Chen L, Wang Y, Li J: Glucagon-Like peptide-1 analog liraglutide protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway. J Diabetes Res. 2013, 2013: 630537.PubMedCentralPubMed Liu J, Liu Y, Chen L, Wang Y, Li J: Glucagon-Like peptide-1 analog liraglutide protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway. J Diabetes Res. 2013, 2013: 630537.PubMedCentralPubMed
Metadata
Title
Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection
Author
Ting C Zhao
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2013
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-12-90

Other articles of this Issue 1/2013

Cardiovascular Diabetology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.