Skip to main content
Top
Published in: Respiratory Research 1/2022

Open Access 01-12-2022 | Acute Respiratory Distress-Syndrome | Research

Respiratory system compliance at the same PEEP level is similar in COVID and non-COVID ARDS

Authors: Federica Fusina, Filippo Albani, Serena Crisci, Alessandro Morandi, Francesca Tansini, Rasula Beschi, Antonio Rosano, Giuseppe Natalini

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

The comparison of respiratory system compliance (Crs) between COVID and non-COVID ARDS patients has been the object of debate, but few studies have evaluated it when considering applied positive end expiratory pressure (PEEP), which is one of the known determinants of Crs itself. The aim of this study was to compare Crs taking into account the applied PEEP.

Methods

Two cohorts of patients were created: those with COVID-ARDS and those with non-COVID ARDS. In the whole sample the association between Crs and type of ARDS at different PEEP levels was adjusted for anthropometric and clinical variables. As secondary analyses, patients were matched for predicted functional residual capacity and the same association was assessed. Moreover, the association between Crs and type of ARDS was reassessed at predefined PEEP level of 0, 5, 10, and 15 cmH2O with a propensity score-weighted linear model.

Results

367 patients were included in the study, 276 patients with COVID-ARDS and 91 with non-COVID ARDS. The association between Crs and type of ARDS was not significant in both the complete cohorts (p = 0.17) and in the matched cohorts (p = 0.92). This was true also for the propensity score weighted association at PEEP 5, 10 and 15 cmH2O, while it was statistically significant at PEEP 0 (with a median difference of 3 ml/cmH2O, which in our opinion is not clinically significant).

Conclusions

The compliance of the respiratory system is similar between COVID ARDS and non-COVID ARDS when calculated at the same PEEP level and while taking into account patients’ anthropometric characteristics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.CrossRef Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.CrossRef
2.
go back to reference Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–102.CrossRef Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–102.CrossRef
3.
go back to reference Haudebourg A-F, Perier F, Tuffet S, de Prost N, Razazi K, Mekontso Dessap A, et al. Respiratory mechanics of COVID-19– versus non–COVID-19–associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;202:287–90.CrossRef Haudebourg A-F, Perier F, Tuffet S, de Prost N, Razazi K, Mekontso Dessap A, et al. Respiratory mechanics of COVID-19– versus non–COVID-19–associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;202:287–90.CrossRef
4.
go back to reference Bertelli M, Fusina F, Prezioso C, Cavallo E, Nencini N, Crisci S, et al. COVID-19 ARDS is characterized by increased dead space ventilation compared with non-COVID ARDS. Respir Care. 2021;66:1406–15.CrossRef Bertelli M, Fusina F, Prezioso C, Cavallo E, Nencini N, Crisci S, et al. COVID-19 ARDS is characterized by increased dead space ventilation compared with non-COVID ARDS. Respir Care. 2021;66:1406–15.CrossRef
5.
go back to reference Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8:1201–8.CrossRef Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8:1201–8.CrossRef
6.
go back to reference Baedorf Kassis E, Schaefer MS, Maley JH, Hoenig B, Loo Y, Hayes MM, et al. Transpulmonary pressure measurements and lung mechanics in patients with early ARDS and SARS-CoV-2. J Crit Care. 2021;63:106–12.CrossRef Baedorf Kassis E, Schaefer MS, Maley JH, Hoenig B, Loo Y, Hayes MM, et al. Transpulmonary pressure measurements and lung mechanics in patients with early ARDS and SARS-CoV-2. J Crit Care. 2021;63:106–12.CrossRef
7.
go back to reference Hess DR. Respiratory mechanics in mechanically ventilated patients. Respir Care. 2014;59:1773–94.CrossRef Hess DR. Respiratory mechanics in mechanically ventilated patients. Respir Care. 2014;59:1773–94.CrossRef
8.
go back to reference Grasso S, Fanelli V, Cafarelli A, Anaclerio R, Amabile M, Ancona G, et al. Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171:1002–8.CrossRef Grasso S, Fanelli V, Cafarelli A, Anaclerio R, Amabile M, Ancona G, et al. Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171:1002–8.CrossRef
9.
go back to reference Kuckelt W, Scharfenberg J, Mrochen H, Dauberschmidt R, Petrakov G, Kassil W, et al. Effect of PEEP on gas exchange, pulmonary mechanics, and hemodynamics in adult respiratory distress syndrome (ARDS). Intensive Care Med. 1981;7:177–85.CrossRef Kuckelt W, Scharfenberg J, Mrochen H, Dauberschmidt R, Petrakov G, Kassil W, et al. Effect of PEEP on gas exchange, pulmonary mechanics, and hemodynamics in adult respiratory distress syndrome (ARDS). Intensive Care Med. 1981;7:177–85.CrossRef
10.
go back to reference Suter PM, Fairley HB, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284–9.CrossRef Suter PM, Fairley HB, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284–9.CrossRef
11.
go back to reference Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A. Impact of positive end-expiratory pressure on chest wall and lung pressure–volume curve in acute respiratory failure. Am J Respir Crit Care Med. 1997;156:846–54.CrossRef Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A. Impact of positive end-expiratory pressure on chest wall and lung pressure–volume curve in acute respiratory failure. Am J Respir Crit Care Med. 1997;156:846–54.CrossRef
12.
go back to reference Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46:2200–11.CrossRef Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46:2200–11.CrossRef
13.
go back to reference ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33. ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.
14.
go back to reference Garnero A, Tuxen D, Corno G, Durand-Gasselin J, Hodgson C, Arnal J-M. Dynamics of end expiratory lung volume after changing positive end-expiratory pressure in acute respiratory distress syndrome patients. Crit Care. 2015;19:340.CrossRef Garnero A, Tuxen D, Corno G, Durand-Gasselin J, Hodgson C, Arnal J-M. Dynamics of end expiratory lung volume after changing positive end-expiratory pressure in acute respiratory distress syndrome patients. Crit Care. 2015;19:340.CrossRef
15.
go back to reference Stocks J, Quanjer PhH. Reference values for residual volume, functional residual capacity and total lung capacity. Eur Respir J. 1995;8:492–506.CrossRef Stocks J, Quanjer PhH. Reference values for residual volume, functional residual capacity and total lung capacity. Eur Respir J. 1995;8:492–506.CrossRef
16.
go back to reference Jones RL, Nzekwu M-MU. The effects of body mass index on lung volumes. Chest. 2006;130:827–33.CrossRef Jones RL, Nzekwu M-MU. The effects of body mass index on lung volumes. Chest. 2006;130:827–33.CrossRef
17.
go back to reference Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199:333–41.CrossRef Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199:333–41.CrossRef
18.
go back to reference Li F, Morgan KL, Zaslavsky AM. Balancing covariates via propensity score weighting. J Am Stat Assoc. 2018;113:390–400.CrossRef Li F, Morgan KL, Zaslavsky AM. Balancing covariates via propensity score weighting. J Am Stat Assoc. 2018;113:390–400.CrossRef
20.
go back to reference Grieco DL, Bongiovanni F, Chen L, Menga LS, Cutuli SL, Pintaudi G, et al. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care. 2020;24:529.CrossRef Grieco DL, Bongiovanni F, Chen L, Menga LS, Cutuli SL, Pintaudi G, et al. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care. 2020;24:529.CrossRef
21.
go back to reference Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.CrossRef Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.CrossRef
22.
go back to reference Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve of total respiratory system in acute respiratory failure: computed tomographic scan study. Am Rev Respir Dis. 1987;136:730–6.CrossRef Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve of total respiratory system in acute respiratory failure: computed tomographic scan study. Am Rev Respir Dis. 1987;136:730–6.CrossRef
23.
go back to reference Suter PM, Fairley HB, Isenberg MD. Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest. 1978;73:158–62.CrossRef Suter PM, Fairley HB, Isenberg MD. Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest. 1978;73:158–62.CrossRef
24.
go back to reference Phelan PD, Williams HE. Ventilatory studies in healthy infants. Pediatr Res. 1969;3:425–32.CrossRef Phelan PD, Williams HE. Ventilatory studies in healthy infants. Pediatr Res. 1969;3:425–32.CrossRef
25.
go back to reference Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidiscip Respir Med. 2017;12:3.CrossRef Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidiscip Respir Med. 2017;12:3.CrossRef
26.
go back to reference Li Bassi G, Suen JY, Dalton HJ, White N, Shrapnel S, Fanning JP, et al. An appraisal of respiratory system compliance in mechanically ventilated COVID-19 patients. Crit Care. 2021;25:199.CrossRef Li Bassi G, Suen JY, Dalton HJ, White N, Shrapnel S, Fanning JP, et al. An appraisal of respiratory system compliance in mechanically ventilated COVID-19 patients. Crit Care. 2021;25:199.CrossRef
27.
go back to reference Ashbaugh David G, Boyd Bigelow D, Petty Thomas L, Levine BE. Acute respiratory distress in adults. The Lancet. 1967;290:319–23.CrossRef Ashbaugh David G, Boyd Bigelow D, Petty Thomas L, Levine BE. Acute respiratory distress in adults. The Lancet. 1967;290:319–23.CrossRef
28.
go back to reference Fusina F, Albani F, Bertelli M, Cavallo E, Crisci S, Caserta R, et al. Corrected minute ventilation is associated with mortality in the ARDS caused by COVID-19. Respir Care. 2021;66:619–25.CrossRef Fusina F, Albani F, Bertelli M, Cavallo E, Crisci S, Caserta R, et al. Corrected minute ventilation is associated with mortality in the ARDS caused by COVID-19. Respir Care. 2021;66:619–25.CrossRef
29.
go back to reference Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383:120–8.CrossRef Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383:120–8.CrossRef
Metadata
Title
Respiratory system compliance at the same PEEP level is similar in COVID and non-COVID ARDS
Authors
Federica Fusina
Filippo Albani
Serena Crisci
Alessandro Morandi
Francesca Tansini
Rasula Beschi
Antonio Rosano
Giuseppe Natalini
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-01930-0

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue