Skip to main content
Top
Published in: Respiratory Research 1/2020

Open Access 01-12-2020 | Respiratory Microbiota | Research

Chronic exposure to ambient particulate matter induces gut microbial dysbiosis in a rat COPD model

Authors: Naijian Li, Zhaowei Yang, Baoling Liao, Tianhui Pan, Jinding Pu, Binwei Hao, Zhenli Fu, Weitao Cao, Yuming Zhou, Fang He, Bing Li, Pixin Ran

Published in: Respiratory Research | Issue 1/2020

Login to get access

Abstract

Background

The role of the microbiota in the pathogenesis of chronic obstructive pulmonary disease (COPD) following exposure to ambient particulate matter (PM) is largely unknown.

Methods

Fifty-four male Sprague-Dawley rats were exposed to clean air, biomass fuel (BMF), or motor vehicle exhaust (MVE) for 4, 12, and 24 weeks. We performed pulmonary inflammation evaluation, morphometric measurements, and lung function analysis in rat lung at three different times points during exposure. Lung and gut microbial composition was assessed by 16S rRNA pyrosequencing. Serum lipopolysaccharide levels were measured and short-chain fatty acids in colon contents were quantified.

Results

After a 24-week PM exposure, rats exhibited pulmonary inflammation and pathological changes characteristic of COPD. The control and PM exposure (BMF and MVE) groups showed similar microbial diversity and composition in rat lung. However, the gut microbiota after 24 weeks PM exposure was characterized by decreased microbial richness and diversity, distinct overall microbial composition, lower levels of short-chain fatty acids, and higher serum lipopolysaccharide.

Conclusion

Chronic exposure to ambient particulate matter induces gut microbial dysbiosis and metabolite shifts in a rat model of chronic obstructive pulmonary disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu W, Huang C, Hu Y, et al. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: a retrospective cohort study. Environ Int. 2016;92–93:284–93.CrossRef Liu W, Huang C, Hu Y, et al. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: a retrospective cohort study. Environ Int. 2016;92–93:284–93.CrossRef
2.
go back to reference Guan WJ, Zheng XY, Chung KF, et al. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet. 2016;388(10054):1939–51.CrossRef Guan WJ, Zheng XY, Chung KF, et al. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet. 2016;388(10054):1939–51.CrossRef
3.
go back to reference Zeki AA, Flayer CH, Haczku A. A burning need to redefine airways disease: biomass smoke exposure identified as a unique risk factor for asthma-chronic obstructive pulmonary disease overlap in low-and middle-income countries. J Allergy Clin Immunol. 2019;143(4):1339–41.CrossRef Zeki AA, Flayer CH, Haczku A. A burning need to redefine airways disease: biomass smoke exposure identified as a unique risk factor for asthma-chronic obstructive pulmonary disease overlap in low-and middle-income countries. J Allergy Clin Immunol. 2019;143(4):1339–41.CrossRef
4.
go back to reference Liu S, Zhou Y, Liu S, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax. 2016;0:1–8. Liu S, Zhou Y, Liu S, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax. 2016;0:1–8.
5.
go back to reference Zhou Y, Zou Y, Li X, et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS Med. 2014;11(3):e1001621.CrossRef Zhou Y, Zou Y, Li X, et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS Med. 2014;11(3):e1001621.CrossRef
6.
go back to reference He F, Liao B, Pu J, et al. Exposure to ambient particulate matter induced COPD in a rat model and a description of the underlying mechanism. Sci Rep. 2017;7:45666.CrossRef He F, Liao B, Pu J, et al. Exposure to ambient particulate matter induced COPD in a rat model and a description of the underlying mechanism. Sci Rep. 2017;7:45666.CrossRef
7.
go back to reference Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014;5(2):215–9.CrossRef Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014;5(2):215–9.CrossRef
8.
go back to reference Yu G, Gail MH, Consonni D, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016;17:163.CrossRef Yu G, Gail MH, Consonni D, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016;17:163.CrossRef
9.
go back to reference Wang Z, Singh R, Miller BE, et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax. 2018;73(4):331–8.CrossRef Wang Z, Singh R, Miller BE, et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax. 2018;73(4):331–8.CrossRef
10.
go back to reference Bouquet J, Tabor DE, Silver JS, et al. Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort. Respir Res. 2020;21(1):77.CrossRef Bouquet J, Tabor DE, Silver JS, et al. Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort. Respir Res. 2020;21(1):77.CrossRef
11.
go back to reference Xu X, Wang X, Hu Y, et al. Short-term effects of thinning on the development and communities of understory vegetation of Chinese fir plantations in Southeastern China. PeerJ. 2020;8:e8536.CrossRef Xu X, Wang X, Hu Y, et al. Short-term effects of thinning on the development and communities of understory vegetation of Chinese fir plantations in Southeastern China. PeerJ. 2020;8:e8536.CrossRef
12.
go back to reference Wang X, Chen M, Zhong M, et al. Exposure to concentrated ambient PM2.5 shortens lifespan and induces inflammation- associated signaling and oxidative stress in drosophila. Toxicol Sci. 2017;156:199–207.PubMedPubMedCentral Wang X, Chen M, Zhong M, et al. Exposure to concentrated ambient PM2.5 shortens lifespan and induces inflammation- associated signaling and oxidative stress in drosophila. Toxicol Sci. 2017;156:199–207.PubMedPubMedCentral
13.
go back to reference Wu SP, Tao S, Zhang ZH, et al. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China. Atmos Environ. 2005;39:7420–32.CrossRef Wu SP, Tao S, Zhang ZH, et al. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China. Atmos Environ. 2005;39:7420–32.CrossRef
14.
go back to reference Li N, He F, Liao B, et al. Exposure to ambient particulate matter alters the microbial composition and induces immune changes in rat lung. Respir Res. 2017;18(1):143.CrossRef Li N, He F, Liao B, et al. Exposure to ambient particulate matter alters the microbial composition and induces immune changes in rat lung. Respir Res. 2017;18(1):143.CrossRef
15.
go back to reference Hsia CC, Hyde DM, Ochs M, et al. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;181(4):394–418.CrossRef Hsia CC, Hyde DM, Ochs M, et al. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;181(4):394–418.CrossRef
17.
go back to reference Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.CrossRef Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.CrossRef
18.
go back to reference Rocafort M, Noguera-Julian M, Rivera J, et al. Evolution of the gut microbiome following acute HIV-1 infection. Microbiome. 2019;7(1):73.CrossRef Rocafort M, Noguera-Julian M, Rivera J, et al. Evolution of the gut microbiome following acute HIV-1 infection. Microbiome. 2019;7(1):73.CrossRef
19.
go back to reference Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax. 2007;62:889–97.CrossRef Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax. 2007;62:889–97.CrossRef
21.
go back to reference Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592–602.CrossRef Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592–602.CrossRef
22.
go back to reference Wang W, Zhou J, Chen M, et al. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Part Fibre Toxicol. 2018;15(1):17.CrossRef Wang W, Zhou J, Chen M, et al. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Part Fibre Toxicol. 2018;15(1):17.CrossRef
23.
go back to reference Alderete TL, Jones RB, Chen Z, et al. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environ Res. 2018;161:472–8.CrossRef Alderete TL, Jones RB, Chen Z, et al. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environ Res. 2018;161:472–8.CrossRef
24.
go back to reference Liu T, Chen X, Xu Y, et al. Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: evidence from a population-based epidemiological study. Environ Int. 2019;130:104882.CrossRef Liu T, Chen X, Xu Y, et al. Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: evidence from a population-based epidemiological study. Environ Int. 2019;130:104882.CrossRef
25.
go back to reference Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15(11):671–82.CrossRef Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15(11):671–82.CrossRef
26.
go back to reference Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3(3):207–15.CrossRef Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3(3):207–15.CrossRef
27.
go back to reference Korsgren M, Linden M, Entwistle N, et al. Inhalation of LPS induces inflammatory airway responses mimicking characteristics of chronic obstructive pulmonary disease. Clin Physiol Funct Imaging. 2012;32(1):71–9.CrossRef Korsgren M, Linden M, Entwistle N, et al. Inhalation of LPS induces inflammatory airway responses mimicking characteristics of chronic obstructive pulmonary disease. Clin Physiol Funct Imaging. 2012;32(1):71–9.CrossRef
28.
go back to reference Wegesser TC, Last JA. Lung response to coarse PM: bioassay in mice. Toxicol Appl Pharmacol. 2008;230(2):159–66.CrossRef Wegesser TC, Last JA. Lung response to coarse PM: bioassay in mice. Toxicol Appl Pharmacol. 2008;230(2):159–66.CrossRef
29.
go back to reference Li J, Hu Y, Liu L, et al. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Sci Total Environ. 2020;721:137432.CrossRef Li J, Hu Y, Liu L, et al. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Sci Total Environ. 2020;721:137432.CrossRef
30.
go back to reference Lau WL, Vaziri ND. Gut microbial short-chain fatty acids and the risk of diabetes. Nat Rev Nephrol. 2019;15(7):389–90.CrossRef Lau WL, Vaziri ND. Gut microbial short-chain fatty acids and the risk of diabetes. Nat Rev Nephrol. 2019;15(7):389–90.CrossRef
31.
go back to reference Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships between gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5.CrossRef Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships between gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5.CrossRef
32.
go back to reference Kaluza J, Harris H, Wallin A, et al. Dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of men. Epidemiology. 2018;29(2):254–60.CrossRef Kaluza J, Harris H, Wallin A, et al. Dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of men. Epidemiology. 2018;29(2):254–60.CrossRef
33.
go back to reference Varraso R, Chiuve SE, Fung TT, et al. Alternate healthy eating index 2010 and risk of chronic obstructive pulmonary disease among US women and men: prospective study. BMJ. 2015;350:h286.CrossRef Varraso R, Chiuve SE, Fung TT, et al. Alternate healthy eating index 2010 and risk of chronic obstructive pulmonary disease among US women and men: prospective study. BMJ. 2015;350:h286.CrossRef
34.
go back to reference Tomoda K, Kubo K, Yamamoto Y, et al. Alteration in gut environment accelerates emphysematous lesions by cigarette smoke in rats discontinuously fed with a fiber-free diet. Am J Respir Crit Care Med. 2014;189:A3000. Tomoda K, Kubo K, Yamamoto Y, et al. Alteration in gut environment accelerates emphysematous lesions by cigarette smoke in rats discontinuously fed with a fiber-free diet. Am J Respir Crit Care Med. 2014;189:A3000.
35.
go back to reference Tomoda K, Kubo K, Dairiki K, et al. Whey peptide-based enteral diet attenuated elastase-induced emphysema with increase in short chain fatty acids in mice. BMC Pulm Med. 2015;15:64.CrossRef Tomoda K, Kubo K, Dairiki K, et al. Whey peptide-based enteral diet attenuated elastase-induced emphysema with increase in short chain fatty acids in mice. BMC Pulm Med. 2015;15:64.CrossRef
Metadata
Title
Chronic exposure to ambient particulate matter induces gut microbial dysbiosis in a rat COPD model
Authors
Naijian Li
Zhaowei Yang
Baoling Liao
Tianhui Pan
Jinding Pu
Binwei Hao
Zhenli Fu
Weitao Cao
Yuming Zhou
Fang He
Bing Li
Pixin Ran
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2020
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-01529-3

Other articles of this Issue 1/2020

Respiratory Research 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.