Skip to main content
Top
Published in: Respiratory Research 1/2018

Open Access 01-12-2018 | Research

Unfractionated heparin ameliorates pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization in acute lung injury

Authors: Shengtian Mu, Yina Liu, Jing Jiang, Renyu Ding, Xu Li, Xin Li, Xiaochun Ma

Published in: Respiratory Research | Issue 1/2018

Login to get access

Abstract

Background

Endothelial barrier dysfunction is central to the pathogenesis of sepsis-associated acute lung injury (ALI). Microtubule (MT) dynamics in vascular endothelium are crucial for the regulation of endothelial barrier function. Unfractionated heparin (UFH) possesses various biological activities, such as anti-inflammatory activity and endothelial barrier protection during sepsis.

Methods

Here, we investigated the effects and underlying mechanisms of UFH on lipopolysaccharide (LPS)-induced endothelial barrier dysfunction. C57BL/6 J mice were randomized into vehicle, UFH, LPS and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received intravenous UFH 0.5 h prior to LPS injection. Human pulmonary microvascular endothelial cells (HPMECs) were cultured for analyzing the effects of UFH on LPS-induced and nocodazole-induced hyperpermeability, F-actin remodeling, and LPS-induced p38 MAPK activation.

Results

UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes, and increased the lung W/D ratio and Evans blue accumulation in vivo. Both in vivo and in vitro studies showed that UFH pretreatment blocked the LPS-induced increase in guanine nucleotide exchange factor (GEF-H1) expression and myosin phosphatase target subunit 1 (MYPT1) phosphorylation, and microtubule (MT) disassembly in LPS-induced ALI mouse model and human pulmonary microvascular endothelial cells (HPMECs). These results suggested that UFH ameliorated LPS-induced endothelial barrier dysfunction by inhibiting MT disassembly and GEF-H1 expression. In addition, UFH attenuated LPS-induced hyperpermeability of HPMECs and F-actin remodeling. In vitro, UFH pretreatment inhibited LPS-induced increase in monomeric tubulin expression and decrease in tubulin polymerization and acetylation. Meanwhile, UFH ameliorates nocodazole-induced MTs disassembly and endothelial barrier dysfunction.Additionally, UFH decreased p38 phosphorylation and activation, which was similar to the effect of the p38 MAPK inhibitor, SB203580.

Conclusions

UFH exert its protective effects on pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization and is associated with the p38 MAPK pathway.
Literature
1.
go back to reference Evans CE, Zhao YY. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. American journal of physiology lung cellular and molecular. Physiology. 2017;312(4):L441–l51. Evans CE, Zhao YY. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. American journal of physiology lung cellular and molecular. Physiology. 2017;312(4):L441–l51.
2.
go back to reference Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN, et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock. 2013;40(5):375–81.CrossRef Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN, et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock. 2013;40(5):375–81.CrossRef
3.
go back to reference Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Seminars in respiratory and critical care medicine. 2006;27(4):337–49.CrossRef Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Seminars in respiratory and critical care medicine. 2006;27(4):337–49.CrossRef
4.
go back to reference Bianchi AM, Reboredo MM, Lucinda LM, Reis FF, Silva MV, Rabelo MA, et al. The effects of prone position ventilation on experimental mild acute lung injury induced by intraperitoneal lipopolysaccharide injection in rats. Lung. 2016;194(2):193–9.CrossRef Bianchi AM, Reboredo MM, Lucinda LM, Reis FF, Silva MV, Rabelo MA, et al. The effects of prone position ventilation on experimental mild acute lung injury induced by intraperitoneal lipopolysaccharide injection in rats. Lung. 2016;194(2):193–9.CrossRef
5.
go back to reference Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res. 2008;76(3):202–7.CrossRef Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res. 2008;76(3):202–7.CrossRef
6.
go back to reference Kasa A, Csortos C, Verin AD. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury. Tissue barriers. 2015;3(1–2):e974448.CrossRef Kasa A, Csortos C, Verin AD. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury. Tissue barriers. 2015;3(1–2):e974448.CrossRef
7.
go back to reference Mikelis CM, Simaan M, Ando K, Fukuhara S, Sakurai A, Amornphimoltham P, et al. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat Commun. 2015;6:6725.CrossRef Mikelis CM, Simaan M, Ando K, Fukuhara S, Sakurai A, Amornphimoltham P, et al. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat Commun. 2015;6:6725.CrossRef
8.
go back to reference Li Y, Wu Y, Wang Z, Zhang XH, Wu WK. Fasudil attenuates lipopolysaccharide-induced acute lung injury in mice through the rho/rho kinase pathway. Medical science monitor : international medical journal of experimental and clinical research. 2010;16(4):Br112–8. Li Y, Wu Y, Wang Z, Zhang XH, Wu WK. Fasudil attenuates lipopolysaccharide-induced acute lung injury in mice through the rho/rho kinase pathway. Medical science monitor : international medical journal of experimental and clinical research. 2010;16(4):Br112–8.
9.
go back to reference Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol. 2002;4(4):294–301.CrossRef Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol. 2002;4(4):294–301.CrossRef
10.
go back to reference Kratzer E, Tian Y, Sarich N, Wu T, Meliton A, Leff A, et al. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. Am J Respir Cell Mol Biol. 2012;47(5):688–97.CrossRef Kratzer E, Tian Y, Sarich N, Wu T, Meliton A, Leff A, et al. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. Am J Respir Cell Mol Biol. 2012;47(5):688–97.CrossRef
11.
go back to reference Birukova AA, Birukov KG, Smurova K, Adyshev D, Kaibuchi K, Alieva I, et al. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J. 2004;18(15):1879–90.CrossRef Birukova AA, Birukov KG, Smurova K, Adyshev D, Kaibuchi K, Alieva I, et al. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J. 2004;18(15):1879–90.CrossRef
12.
go back to reference Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015;2015:507151.PubMedPubMedCentral Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015;2015:507151.PubMedPubMedCentral
13.
go back to reference Li X, Zheng Z, Mao Y, Ma X. Unfractionated heparin promotes LPS-induced endothelial barrier dysfunction: a preliminary study on the roles of angiopoietin/Tie2 axis. Thromb Res. 2012;129(5):e223–8.CrossRef Li X, Zheng Z, Mao Y, Ma X. Unfractionated heparin promotes LPS-induced endothelial barrier dysfunction: a preliminary study on the roles of angiopoietin/Tie2 axis. Thromb Res. 2012;129(5):e223–8.CrossRef
14.
go back to reference Han J, Ding R, Zhao D, Zhang Z, Ma X. Unfractionated heparin attenuates lung vascular leak in a mouse model of sepsis: role of RhoA/rho kinase pathway. Thromb Res. 2013;132(1):e42–7.CrossRef Han J, Ding R, Zhao D, Zhang Z, Ma X. Unfractionated heparin attenuates lung vascular leak in a mouse model of sepsis: role of RhoA/rho kinase pathway. Thromb Res. 2013;132(1):e42–7.CrossRef
15.
go back to reference Schieven GL. The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem. 2005;5(10):921–8.CrossRef Schieven GL. The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem. 2005;5(10):921–8.CrossRef
16.
go back to reference Chu ZG, Zhang JP, Song HP, Hu JY, Zhang Q, Xiang F, et al. p38 MAP kinase mediates burn serum-induced endothelial barrier dysfunction: involvement of F-actin rearrangement and L-caldesmon phosphorylation. Shock. 2010;34(3):222–8.CrossRef Chu ZG, Zhang JP, Song HP, Hu JY, Zhang Q, Xiang F, et al. p38 MAP kinase mediates burn serum-induced endothelial barrier dysfunction: involvement of F-actin rearrangement and L-caldesmon phosphorylation. Shock. 2010;34(3):222–8.CrossRef
17.
go back to reference Li X, Zheng Z, Li X, Ma X. Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-kappaB activation on endothelial cell. Cytokine. 2012;60(1):114–21.CrossRef Li X, Zheng Z, Li X, Ma X. Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-kappaB activation on endothelial cell. Cytokine. 2012;60(1):114–21.CrossRef
18.
go back to reference Liu Z, Wang L, Dong Z, Pan J, Zhu H, Zhang Z, et al. Heparin inhibits lipopolysaccharide-induced inflammation via inducing caveolin-1 and activating the p38/mitogen-activated protein kinase pathway in murine peritoneal macrophages. Mol Med Rep. 2015;12(3):3895–901.CrossRef Liu Z, Wang L, Dong Z, Pan J, Zhu H, Zhang Z, et al. Heparin inhibits lipopolysaccharide-induced inflammation via inducing caveolin-1 and activating the p38/mitogen-activated protein kinase pathway in murine peritoneal macrophages. Mol Med Rep. 2015;12(3):3895–901.CrossRef
19.
go back to reference Ding R, Zhao D, Guo R, Zhang Z, Ma X. Treatment with unfractionated heparin attenuates coagulation and inflammation in endotoxemic mice. Thromb Res. 2011;128(6):e160–5.CrossRef Ding R, Zhao D, Guo R, Zhang Z, Ma X. Treatment with unfractionated heparin attenuates coagulation and inflammation in endotoxemic mice. Thromb Res. 2011;128(6):e160–5.CrossRef
20.
go back to reference Monaghan-Benson E, Wittchen ES. In vitro analyses of endothelial cell permeability. Methods Mol. Biol. 2011;763:281–90.CrossRef Monaghan-Benson E, Wittchen ES. In vitro analyses of endothelial cell permeability. Methods Mol. Biol. 2011;763:281–90.CrossRef
21.
go back to reference Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ. Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J Cell Sci. 1998;111(Pt 22):3379–87.PubMed Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ. Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J Cell Sci. 1998;111(Pt 22):3379–87.PubMed
22.
go back to reference Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010;298(6):L837–48.CrossRef Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010;298(6):L837–48.CrossRef
23.
go back to reference Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12(12):773–86.CrossRef Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12(12):773–86.CrossRef
24.
go back to reference Zarychanski R, Abou-Setta AM, Kanji S, Turgeon AF, Kumar A, Houston DS, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med. 2015;43(3):511–8.CrossRef Zarychanski R, Abou-Setta AM, Kanji S, Turgeon AF, Kumar A, Houston DS, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med. 2015;43(3):511–8.CrossRef
25.
go back to reference Wang C, Chi C, Guo L, Wang X, Guo L, Sun J, et al. Heparin therapy reduces 28-day mortality in adult severe sepsis patients: a systematic review and meta-analysis. Crit care. 2014;18(5):563.CrossRef Wang C, Chi C, Guo L, Wang X, Guo L, Sun J, et al. Heparin therapy reduces 28-day mortality in adult severe sepsis patients: a systematic review and meta-analysis. Crit care. 2014;18(5):563.CrossRef
26.
go back to reference Li X, Li Z, Zheng Z, Liu Y, Ma X. Unfractionated heparin ameliorates lipopolysaccharide-induced lung inflammation by downregulating nuclear factor-kappaB signaling pathway. Inflammation. 2013;36(6):1201–8.CrossRef Li X, Li Z, Zheng Z, Liu Y, Ma X. Unfractionated heparin ameliorates lipopolysaccharide-induced lung inflammation by downregulating nuclear factor-kappaB signaling pathway. Inflammation. 2013;36(6):1201–8.CrossRef
27.
go back to reference Rizzo AN, Letsiou E, Sammani S, Esquinca A, Garcia JG, Dudek SM. Abstract 13333: Imatinib attenuates LPS-induced inflammation and vascular leakage in clinically relevant murine models of acute lung injury. Circulation. 2014;130:A13333–A. Rizzo AN, Letsiou E, Sammani S, Esquinca A, Garcia JG, Dudek SM. Abstract 13333: Imatinib attenuates LPS-induced inflammation and vascular leakage in clinically relevant murine models of acute lung injury. Circulation. 2014;130:A13333–A.
28.
go back to reference Shen W, Gan J, Xu S, Jiang G, Wu H. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacol Res. 2009;60(4):296–302.CrossRef Shen W, Gan J, Xu S, Jiang G, Wu H. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacol Res. 2009;60(4):296–302.CrossRef
29.
go back to reference Abdelmageed ME, El-Awady MS, Suddek GM. Apocynin ameliorates endotoxin-induced acute lung injury in rats. Int Immunopharmacol. 2016;30:163–70.CrossRef Abdelmageed ME, El-Awady MS, Suddek GM. Apocynin ameliorates endotoxin-induced acute lung injury in rats. Int Immunopharmacol. 2016;30:163–70.CrossRef
30.
go back to reference Kawasaki M, Kuwano K, Hagimoto N, Matsuba T, Kunitake R, Tanaka T, et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol. 2000;157(2):597–603.CrossRef Kawasaki M, Kuwano K, Hagimoto N, Matsuba T, Kunitake R, Tanaka T, et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol. 2000;157(2):597–603.CrossRef
31.
go back to reference Wang L, Wang T, Li H, Liu Q, Zhang Z, Xie W, et al. Receptor interacting protein 3-mediated necroptosis promotes lipopolysaccharide-induced inflammation and acute respiratory distress syndrome in mice. PLoS One. 2016;11(5):e0155723.CrossRef Wang L, Wang T, Li H, Liu Q, Zhang Z, Xie W, et al. Receptor interacting protein 3-mediated necroptosis promotes lipopolysaccharide-induced inflammation and acute respiratory distress syndrome in mice. PLoS One. 2016;11(5):e0155723.CrossRef
32.
go back to reference Wang ZY, Wu SN, Zhu ZZ, Yang BX, Zhu X. Inhaled unfractionated heparin improves abnormalities of alveolar coagulation, fibrinolysis and inflammation in endotoxemia-induced lung injury rats. Chin Med J. 2013;126(2):318–24.PubMed Wang ZY, Wu SN, Zhu ZZ, Yang BX, Zhu X. Inhaled unfractionated heparin improves abnormalities of alveolar coagulation, fibrinolysis and inflammation in endotoxemia-induced lung injury rats. Chin Med J. 2013;126(2):318–24.PubMed
33.
go back to reference Jesmin S, Zaedi S, Islam AM, Sultana SN, Iwashima Y, Wada T, et al. Time-dependent alterations of VEGF and its signaling molecules in acute lung injury in a rat model of sepsis. Inflammation. 2012;35(2):484–500.CrossRef Jesmin S, Zaedi S, Islam AM, Sultana SN, Iwashima Y, Wada T, et al. Time-dependent alterations of VEGF and its signaling molecules in acute lung injury in a rat model of sepsis. Inflammation. 2012;35(2):484–500.CrossRef
34.
go back to reference Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med. 2015;277(3):277–93.CrossRef Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med. 2015;277(3):277–93.CrossRef
35.
go back to reference Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell. 2008;19(5):2147–53.CrossRef Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell. 2008;19(5):2147–53.CrossRef
36.
go back to reference Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JG, et al. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J. Cell. Physiol. 2005;204(3):934–47.CrossRef Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JG, et al. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J. Cell. Physiol. 2005;204(3):934–47.CrossRef
37.
go back to reference Gorshkov BA, Zemskova MA, Verin AD, Bogatcheva NV. Taxol alleviates 2-methoxyestradiol-induced endothelial permeability. Vasc Pharmacol. 2012;56(1–2):56–63.CrossRef Gorshkov BA, Zemskova MA, Verin AD, Bogatcheva NV. Taxol alleviates 2-methoxyestradiol-induced endothelial permeability. Vasc Pharmacol. 2012;56(1–2):56–63.CrossRef
38.
go back to reference Yu L, Quinn DA, Garg HG, Hales CA. Heparin inhibits pulmonary artery smooth muscle cell proliferation through guanine nucleotide exchange factor-H1/RhoA/rho kinase/p27. Am J Respir Cell Mol Biol. 2011;44(4):524–30.CrossRef Yu L, Quinn DA, Garg HG, Hales CA. Heparin inhibits pulmonary artery smooth muscle cell proliferation through guanine nucleotide exchange factor-H1/RhoA/rho kinase/p27. Am J Respir Cell Mol Biol. 2011;44(4):524–30.CrossRef
39.
go back to reference Redeker V, Levilliers N, Schmitter JM, Le Caer JP, Rossier J, Adoutte A, et al. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science. 1994;266(5191):1688–91.CrossRef Redeker V, Levilliers N, Schmitter JM, Le Caer JP, Rossier J, Adoutte A, et al. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science. 1994;266(5191):1688–91.CrossRef
40.
go back to reference Bounoutas A, Kratz J, Emtage L, Ma C, Nguyen KC, Chalfie M. Microtubule depolymerization in Caenorhabditis elegans touch receptor neurons reduces gene expression through a p38 MAPK pathway. Proc Natl Acad Sci. 2011;108(10):3982–7.CrossRef Bounoutas A, Kratz J, Emtage L, Ma C, Nguyen KC, Chalfie M. Microtubule depolymerization in Caenorhabditis elegans touch receptor neurons reduces gene expression through a p38 MAPK pathway. Proc Natl Acad Sci. 2011;108(10):3982–7.CrossRef
41.
go back to reference Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. Involvement of microtubules, p38, and rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007;292(2):L487–99.CrossRef Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. Involvement of microtubules, p38, and rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007;292(2):L487–99.CrossRef
42.
go back to reference Armstrong SC, Delacey M, Ganote CE. Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes. J Mol Cell Cardiol. 1999;31(3):555–67.CrossRef Armstrong SC, Delacey M, Ganote CE. Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes. J Mol Cell Cardiol. 1999;31(3):555–67.CrossRef
43.
go back to reference Pan YX, Chen KF, Lin YX, Wu W, Zhou XM, Zhang XS, et al. Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-alpha. J. Clin. Neurosci. 2013;20(5):726–30.CrossRef Pan YX, Chen KF, Lin YX, Wu W, Zhou XM, Zhang XS, et al. Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-alpha. J. Clin. Neurosci. 2013;20(5):726–30.CrossRef
44.
go back to reference Sarker KP, Nakata M, Kitajima I, Nakajima T, Maruyama I. Inhibition of caspase-3 activation by SB 203580, p38 mitogen-activated protein kinase inhibitor in nitric oxide-induced apoptosis of PC-12 cells. J Mol Neurosci. 2000;15(3):243–50.CrossRef Sarker KP, Nakata M, Kitajima I, Nakajima T, Maruyama I. Inhibition of caspase-3 activation by SB 203580, p38 mitogen-activated protein kinase inhibitor in nitric oxide-induced apoptosis of PC-12 cells. J Mol Neurosci. 2000;15(3):243–50.CrossRef
45.
go back to reference Sreekanth GP, Chuncharunee A, Sirimontaporn A, Panaampon J, Noisakran S, Yenchitsomanus PT, et al. SB203580 modulates p38 MAPK signaling and dengue virus-induced liver injury by reducing MAPKAPK2, HSP27, and ATF2 phosphorylation. PLoS One. 2016;11(2):e0149486.CrossRef Sreekanth GP, Chuncharunee A, Sirimontaporn A, Panaampon J, Noisakran S, Yenchitsomanus PT, et al. SB203580 modulates p38 MAPK signaling and dengue virus-induced liver injury by reducing MAPKAPK2, HSP27, and ATF2 phosphorylation. PLoS One. 2016;11(2):e0149486.CrossRef
46.
go back to reference Zhou Z, Guo F, Yi L, Tang J, Dou Y, Huan J. The p38/mitogen-activated protein kinase pathway is implicated in lipopolysaccharide-induced microtubule depolymerization via up-regulation of microtubule-associated protein 4 phosphorylation in human vascular endothelium. Surgery. 2015;157(3):590–8.CrossRef Zhou Z, Guo F, Yi L, Tang J, Dou Y, Huan J. The p38/mitogen-activated protein kinase pathway is implicated in lipopolysaccharide-induced microtubule depolymerization via up-regulation of microtubule-associated protein 4 phosphorylation in human vascular endothelium. Surgery. 2015;157(3):590–8.CrossRef
47.
go back to reference Liang Y, Li X, Zhang X, Li Z, Wang L, Sun Y, et al. Elevated levels of plasma TNF-alpha are associated with microvascular endothelial dysfunction in patients with sepsis through activating the NF-kappaB and p38 mitogen-activated protein kinase in endothelial cells. Shock. 2014;41(4):275–81.CrossRef Liang Y, Li X, Zhang X, Li Z, Wang L, Sun Y, et al. Elevated levels of plasma TNF-alpha are associated with microvascular endothelial dysfunction in patients with sepsis through activating the NF-kappaB and p38 mitogen-activated protein kinase in endothelial cells. Shock. 2014;41(4):275–81.CrossRef
48.
go back to reference Bannon PG, Kim MJ, Dean RT, Dawes J. Augmentation of vascular endothelial barrier function by heparin and low molecular weight heparin. Thromb Haemost. 1995;73(4):706–12.PubMed Bannon PG, Kim MJ, Dean RT, Dawes J. Augmentation of vascular endothelial barrier function by heparin and low molecular weight heparin. Thromb Haemost. 1995;73(4):706–12.PubMed
49.
go back to reference Young E, Venner T, Ribau J, Shaughnessy S, Hirsh J, Podor TJ. The binding of unfractionated heparin and low molecular weight heparin to thrombin-activated human endothelial cells. Thromb Res. 1999;96(5):373–81.CrossRef Young E, Venner T, Ribau J, Shaughnessy S, Hirsh J, Podor TJ. The binding of unfractionated heparin and low molecular weight heparin to thrombin-activated human endothelial cells. Thromb Res. 1999;96(5):373–81.CrossRef
50.
go back to reference Martinez-Sales V, Vila V, Reganon E, Oms JG, Aznar J. Effect of unfractionated heparin and a low molecular weight heparin (enoxaparin) on coagulant activity of cultured human endothelial cells. Haematologica. 2003;88(6):694–9.PubMed Martinez-Sales V, Vila V, Reganon E, Oms JG, Aznar J. Effect of unfractionated heparin and a low molecular weight heparin (enoxaparin) on coagulant activity of cultured human endothelial cells. Haematologica. 2003;88(6):694–9.PubMed
51.
go back to reference Vignoli A, Marchetti M, Balducci D, Barbui T, Falanga A. Differential effect of the low-molecular-weight heparin, dalteparin, and unfractionated heparin on microvascular endothelial cell hemostatic properties. Haematologica. 2006;91(2):207–14.PubMed Vignoli A, Marchetti M, Balducci D, Barbui T, Falanga A. Differential effect of the low-molecular-weight heparin, dalteparin, and unfractionated heparin on microvascular endothelial cell hemostatic properties. Haematologica. 2006;91(2):207–14.PubMed
52.
go back to reference Kosoff R, Chow HY, Radu M, Chernoff J. Pak2 kinase restrains mast cell FcepsilonRI receptor signaling through modulation of rho protein guanine nucleotide exchange factor (GEF) activity. J Biol Chem. 2013;288(2):974–83.CrossRef Kosoff R, Chow HY, Radu M, Chernoff J. Pak2 kinase restrains mast cell FcepsilonRI receptor signaling through modulation of rho protein guanine nucleotide exchange factor (GEF) activity. J Biol Chem. 2013;288(2):974–83.CrossRef
53.
go back to reference Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, et al. Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of rho-dependent mechanisms. J Cell Physiol. 2010;201(1):55–70.CrossRef Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, et al. Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of rho-dependent mechanisms. J Cell Physiol. 2010;201(1):55–70.CrossRef
54.
go back to reference Holcomb JB. A novel and potentially unifying mechanism for shock induced early coagulopathy. Ann Surg. 2011;254(2):201–2.CrossRef Holcomb JB. A novel and potentially unifying mechanism for shock induced early coagulopathy. Ann Surg. 2011;254(2):201–2.CrossRef
55.
go back to reference Yini S, Heng Z, Xin A, Xiaochun M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand. 2015;59(2):160–9.CrossRef Yini S, Heng Z, Xin A, Xiaochun M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand. 2015;59(2):160–9.CrossRef
56.
go back to reference Chen S, He Y, Hu Z, Lu S, Yin X, Ma X, et al. Heparanase mediates intestinal inflammation and injury in a mouse model of Sepsis. J. Histochem. Cytochem. 2017;65(4):241–9.CrossRef Chen S, He Y, Hu Z, Lu S, Yin X, Ma X, et al. Heparanase mediates intestinal inflammation and injury in a mouse model of Sepsis. J. Histochem. Cytochem. 2017;65(4):241–9.CrossRef
57.
go back to reference Palumbo S, Shin YJ, Ahmad K, Desai AA, Quijada H, Mohamed M, et al. Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017;312(3):L297–l308.CrossRef Palumbo S, Shin YJ, Ahmad K, Desai AA, Quijada H, Mohamed M, et al. Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017;312(3):L297–l308.CrossRef
Metadata
Title
Unfractionated heparin ameliorates pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization in acute lung injury
Authors
Shengtian Mu
Yina Liu
Jing Jiang
Renyu Ding
Xu Li
Xin Li
Xiaochun Ma
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2018
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-018-0925-6

Other articles of this Issue 1/2018

Respiratory Research 1/2018 Go to the issue