Skip to main content
Top
Published in: Inflammation 2/2012

01-04-2012

Time-Dependent Alterations of VEGF and Its Signaling Molecules in Acute Lung Injury in a Rat Model of Sepsis

Authors: Subrina Jesmin, Sohel Zaedi, A. M. Shahidul Islam, S. Nusrat Sultana, Yoshio Iwashima, Takeshi Wada, Naoto Yamaguchi, Michiaki Hiroe, Satoshi Gando

Published in: Inflammation | Issue 2/2012

Login to get access

Abstract

Molecular mechanisms of sepsis-associated acute lung injury (ALI) are poorly defined. Since vascular endothelial growth factor (VEGF) is a potent vascular permeability and mitogenic factor, it might contribute to the development of ALI in sepsis. Thus, using lipopolysaccharide (LPS)-induced (15 mg/kg, intraperitoneal) endotoxemic rat model, we studied the timeline (1, 3, 6, and 10 h) of pulmonary VEGF expression and its signaling machinery. Levels of pulmonary VEGF and its angiogenic-mediating receptor, Flk-1, were downregulated by LPS in a time-dependent manner; levels of plasma VEGF and its permeability-mediating receptor, Flt-1, in contrast, was upregulated with time. In addition, blockade of Flt-1 could improve the downregulated pulmonary VEGF level and attenuate the elevated plasma and pulmonary levels of TNF-α, followed by improvement of arterial oxygenation and wet-to-dry weight ratio of the lung. Expression of signaling, pro- and or apoptotic factors after LPS administration were as follows: phosphorylated Akt, a downstream molecule was downregulated time dependently; endothelial nitric oxide synthase levels were significantly reduced; pro-apoptotic markers caspase 3 and Bax were upregulated whereas levels of Bcl-2 were downregulated. The present findings show that VEGF may play a role through the expression of Flt-1 in LPS-induced ALI. Moreover, downregulation of VEGF signaling cascade may account for LPS-induced apoptosis and impaired physiological angiogenesis in lung tissues, which in turn may contribute to the development of ALI induced by LPS.
Literature
1.
go back to reference Baue, A.E., R. Durham, and E. Faist. 1998. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): Are we winning the battle? Shock 10: 79–89.PubMedCrossRef Baue, A.E., R. Durham, and E. Faist. 1998. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): Are we winning the battle? Shock 10: 79–89.PubMedCrossRef
2.
go back to reference Bone, C. 1991. The pathogenesis of sepsis. Annals of Internal Medicine 115: 457–469.PubMed Bone, C. 1991. The pathogenesis of sepsis. Annals of Internal Medicine 115: 457–469.PubMed
3.
go back to reference Bernard, G.R., A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, M. Lamy, J.R. Legall, A. Morris, and R. Spragg. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149: 818–824.PubMed Bernard, G.R., A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, M. Lamy, J.R. Legall, A. Morris, and R. Spragg. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149: 818–824.PubMed
4.
go back to reference Mauricio, R., C.R. Woods, A.L. Mora, J. Xu, and K.L. Brigham. 2005. Endotoxin-induced lung injury in mice: Structural, functional, and biochemical responses. American Journal of Physiology. Lung Cellular and Molecular Physiology 288: L333–L341. Mauricio, R., C.R. Woods, A.L. Mora, J. Xu, and K.L. Brigham. 2005. Endotoxin-induced lung injury in mice: Structural, functional, and biochemical responses. American Journal of Physiology. Lung Cellular and Molecular Physiology 288: L333–L341.
5.
go back to reference Dvorak, H.F., L.F. Brown, M. Detmar, and A.M. Dvorak. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. The American Journal of Pathology 146: 1029–1039.PubMed Dvorak, H.F., L.F. Brown, M. Detmar, and A.M. Dvorak. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. The American Journal of Pathology 146: 1029–1039.PubMed
6.
go back to reference Ferrara, N. 2004. Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Reviews 25: 581–611.PubMedCrossRef Ferrara, N. 2004. Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Reviews 25: 581–611.PubMedCrossRef
7.
go back to reference Waltenberger, J., L. Claesson-Welsh, A. Siegbahn, M. Shibuya, and C.H. Heldin. 1994. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. The Journal of Biological Chemistry 269: 26988–26995.PubMed Waltenberger, J., L. Claesson-Welsh, A. Siegbahn, M. Shibuya, and C.H. Heldin. 1994. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. The Journal of Biological Chemistry 269: 26988–26995.PubMed
8.
go back to reference Dimmeler, S., and A.M. Zeiher. 2000. Endothelial cell apoptosis in angiogenesis and vessel regression. Circulation Research 87: 434–439.PubMed Dimmeler, S., and A.M. Zeiher. 2000. Endothelial cell apoptosis in angiogenesis and vessel regression. Circulation Research 87: 434–439.PubMed
9.
go back to reference Fujio, Y., and K. Walsh. 1999. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. The Journal of Biological Chemistry 274: 16349–16354.PubMedCrossRef Fujio, Y., and K. Walsh. 1999. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. The Journal of Biological Chemistry 274: 16349–16354.PubMedCrossRef
10.
go back to reference Gerber, H.P., A. McMurtrey, J. Kowalski, M. Yan, B.A. Keyt, V. Dixit, and N. Ferrara. 1998. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. The Journal of Biological Chemistry 273: 30336–30343.PubMedCrossRef Gerber, H.P., A. McMurtrey, J. Kowalski, M. Yan, B.A. Keyt, V. Dixit, and N. Ferrara. 1998. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. The Journal of Biological Chemistry 273: 30336–30343.PubMedCrossRef
11.
go back to reference Nor, J.E., J. Christensen, D.J. Mooney, and P.J. Polverini. 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. The American Journal of Pathology 154: 375–384.PubMedCrossRef Nor, J.E., J. Christensen, D.J. Mooney, and P.J. Polverini. 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. The American Journal of Pathology 154: 375–384.PubMedCrossRef
12.
go back to reference Wort, S.J., and T.W. Evan. 1999. The role of the endothelium in modulating vascular control in sepsis and related conditions. British Medical Bulletin 55: 30–48.PubMedCrossRef Wort, S.J., and T.W. Evan. 1999. The role of the endothelium in modulating vascular control in sepsis and related conditions. British Medical Bulletin 55: 30–48.PubMedCrossRef
13.
go back to reference Wu, R., X. Song, Y. Xu, and X. Meng. 2000. Apoptosis of endothelial cells in alteration of microvascular permeability in lung during sepsis. Zhonghua Wai Ke Za Zhi 38: 385–387.PubMed Wu, R., X. Song, Y. Xu, and X. Meng. 2000. Apoptosis of endothelial cells in alteration of microvascular permeability in lung during sepsis. Zhonghua Wai Ke Za Zhi 38: 385–387.PubMed
14.
go back to reference Munshi, N., A.Z. Fernandis, R.P. Cherla, I.W. Park, and R.K. Ganju. 2002. Lipopolysaccharide-induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. Journal of Immunology 168: 5860–5866. Munshi, N., A.Z. Fernandis, R.P. Cherla, I.W. Park, and R.K. Ganju. 2002. Lipopolysaccharide-induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. Journal of Immunology 168: 5860–5866.
15.
go back to reference Pickkers, P., T. Sprong, L. Eijk, H. Hoeven, P. Smits, and M. Deuren. 2005. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock 24: 508–512.PubMedCrossRef Pickkers, P., T. Sprong, L. Eijk, H. Hoeven, P. Smits, and M. Deuren. 2005. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock 24: 508–512.PubMedCrossRef
16.
go back to reference Tsokos, M., T. Pufe, F. Paulsen, S. Anders, and R. Mentlein. 2003. Pulmonary expression of vascular endothelial growth factor in sepsis. Archives of Pathology & Laboratory Medicine 127: 331–335. Tsokos, M., T. Pufe, F. Paulsen, S. Anders, and R. Mentlein. 2003. Pulmonary expression of vascular endothelial growth factor in sepsis. Archives of Pathology & Laboratory Medicine 127: 331–335.
17.
go back to reference Zaedi, S., S. Jesmin, N. Yamaguchi, N. Shimojo, S. Maeda, S. Gando, I. Yamaguchi, K. Goto, and T. Miyauchi. 2006. Altered expression of endothelin, vascular endothelial growth factor, and its receptor in hepatic tissue in endotoxemic rat. Experimental Biology and Medicine 231: 1182–1186.PubMed Zaedi, S., S. Jesmin, N. Yamaguchi, N. Shimojo, S. Maeda, S. Gando, I. Yamaguchi, K. Goto, and T. Miyauchi. 2006. Altered expression of endothelin, vascular endothelial growth factor, and its receptor in hepatic tissue in endotoxemic rat. Experimental Biology and Medicine 231: 1182–1186.PubMed
18.
go back to reference Jesmin, S., S. Gando, N. Matsuda, I. Sakuma, S. Kobayashi, F. Sakuraya, and Y. Hattori. 2004. Temporal changes in pulmonary expression of key procoagulant molecules in rabbits with endotoxin-induced acute lung injury: Elevated expression levels of protease-activated receptors. Thrombosis and Haemostasis 92: 966–979.PubMed Jesmin, S., S. Gando, N. Matsuda, I. Sakuma, S. Kobayashi, F. Sakuraya, and Y. Hattori. 2004. Temporal changes in pulmonary expression of key procoagulant molecules in rabbits with endotoxin-induced acute lung injury: Elevated expression levels of protease-activated receptors. Thrombosis and Haemostasis 92: 966–979.PubMed
19.
go back to reference Kristof, A., P. Goldberg, V.E. Laubach, and S.N.A. Hussain. 1998. Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury. American Journal of Respiratory and Critical Care Medicine 158: 1883–1889.PubMed Kristof, A., P. Goldberg, V.E. Laubach, and S.N.A. Hussain. 1998. Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury. American Journal of Respiratory and Critical Care Medicine 158: 1883–1889.PubMed
20.
go back to reference Yamaguchi, N., S. Jesmin, S. Zaedi, N. Shimojo, S. Maeda, S. Gando, A. Koyama, and T. Miyauchi. 2006. Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat. Peptides 27: 2258–2270.PubMedCrossRef Yamaguchi, N., S. Jesmin, S. Zaedi, N. Shimojo, S. Maeda, S. Gando, A. Koyama, and T. Miyauchi. 2006. Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat. Peptides 27: 2258–2270.PubMedCrossRef
21.
go back to reference Jesmin, S., S. Gando, S. Zaedi, and F. Sakuraya. 2007. Differential expression, time course and distribution of four PARs in rats with endotoxin-induced acute lung injury. Inflammation 30(1–2): 14–27.PubMedCrossRef Jesmin, S., S. Gando, S. Zaedi, and F. Sakuraya. 2007. Differential expression, time course and distribution of four PARs in rats with endotoxin-induced acute lung injury. Inflammation 30(1–2): 14–27.PubMedCrossRef
22.
go back to reference Zaedi, S., S. Jesmin, S. Maeda, N. Shimojo, I. Yamaguchi, K. Goto, and T. Miyauchi. 2006. Alterations in gene expressions encoding preproET-1 and NOS in pulmonary tissue in endotoxemic rats. Experimental Biology and Medicine (Maywood) 231: 992–996. Zaedi, S., S. Jesmin, S. Maeda, N. Shimojo, I. Yamaguchi, K. Goto, and T. Miyauchi. 2006. Alterations in gene expressions encoding preproET-1 and NOS in pulmonary tissue in endotoxemic rats. Experimental Biology and Medicine (Maywood) 231: 992–996.
23.
go back to reference Jesmin, S., I. Sakuma, A. Salah-Eldin, K. Nonomura, Y. Hattori, and A. Kitabatake. 2003. Diminished penile expression of vascular endothelial growth factor and its receptors at the insulin-resistant stage of a type II diabetic rat model: A possible cause for erectile dysfunction in diabetes. Journal of Molecular Endocrinology 31: 401–418.PubMedCrossRef Jesmin, S., I. Sakuma, A. Salah-Eldin, K. Nonomura, Y. Hattori, and A. Kitabatake. 2003. Diminished penile expression of vascular endothelial growth factor and its receptors at the insulin-resistant stage of a type II diabetic rat model: A possible cause for erectile dysfunction in diabetes. Journal of Molecular Endocrinology 31: 401–418.PubMedCrossRef
24.
go back to reference Jesmin, S., H. Togashi, I. Sakuma, C.N. Mowa, K. Ueno, T. Yamaguchi, M. Yoshioka, and A. Kitabatake. 2004. Gonadal hormones and frontocortical expression of vascular endothelial growth factor in male stroke-prone, spontaneously hypertensive rats, a model for attention-deficit/hyperactivity disorder. Endocrinology 145: 4330–4343.PubMedCrossRef Jesmin, S., H. Togashi, I. Sakuma, C.N. Mowa, K. Ueno, T. Yamaguchi, M. Yoshioka, and A. Kitabatake. 2004. Gonadal hormones and frontocortical expression of vascular endothelial growth factor in male stroke-prone, spontaneously hypertensive rats, a model for attention-deficit/hyperactivity disorder. Endocrinology 145: 4330–4343.PubMedCrossRef
25.
go back to reference Janicke, R.U., M.L. Sprengart, M.R. Wati, and A.G. Porter. 1998. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. The Journal of Biological Chemistry 273: 9357–9360.PubMedCrossRef Janicke, R.U., M.L. Sprengart, M.R. Wati, and A.G. Porter. 1998. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. The Journal of Biological Chemistry 273: 9357–9360.PubMedCrossRef
26.
go back to reference Thickett, D.R., L. Armstrong, and A.B. Millar. 2002. A role for vascular endothelial growth factor in acute and resolving lung injury. American Journal of Respiratory and Critical Care Medicine 166: 1332–1337.PubMedCrossRef Thickett, D.R., L. Armstrong, and A.B. Millar. 2002. A role for vascular endothelial growth factor in acute and resolving lung injury. American Journal of Respiratory and Critical Care Medicine 166: 1332–1337.PubMedCrossRef
27.
go back to reference Thickett, D.R., L. Armstrong, S.J. Christie, and A.B. Millar. 2001. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164: 657–664. Thickett, D.R., L. Armstrong, S.J. Christie, and A.B. Millar. 2001. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164: 657–664.
28.
go back to reference Kaner, R.J., R. Ladetto, N. Singh, N. Fukuda, M.A. Matthay, and R.G. Crystal. 2000. Lung over expression of the vascular endothelial growth factor gene induces pulmonary edema. American Journal of Respiratory and Critical Care Medicine 22: 657–664. Kaner, R.J., R. Ladetto, N. Singh, N. Fukuda, M.A. Matthay, and R.G. Crystal. 2000. Lung over expression of the vascular endothelial growth factor gene induces pulmonary edema. American Journal of Respiratory and Critical Care Medicine 22: 657–664.
29.
go back to reference Corne, J., G. Chupp, C.G. Lee, R.J. Homer, Z. Zhu, Q. Chen, B. Ma, Y. Du, F. Roux, J. McArdle, A.B. Waxman, and J.A. Elias. 2000. IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. Journal of Clinical Investigation 106: 783–791.PubMedCrossRef Corne, J., G. Chupp, C.G. Lee, R.J. Homer, Z. Zhu, Q. Chen, B. Ma, Y. Du, F. Roux, J. McArdle, A.B. Waxman, and J.A. Elias. 2000. IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. Journal of Clinical Investigation 106: 783–791.PubMedCrossRef
30.
go back to reference Kaner, R.J., and R.G. Crystal. 2001. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Molecular Medicine 7: 240–246.PubMed Kaner, R.J., and R.G. Crystal. 2001. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Molecular Medicine 7: 240–246.PubMed
31.
go back to reference Kimura, H., and H. Esumi. 2003. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochimica Polonica 50: 49–59.PubMed Kimura, H., and H. Esumi. 2003. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochimica Polonica 50: 49–59.PubMed
32.
go back to reference Vallance, P., and S. Moncada. 1993. The role of endogenous nitric oxide in septic shock. New Horizons 1: 77–86.PubMed Vallance, P., and S. Moncada. 1993. The role of endogenous nitric oxide in septic shock. New Horizons 1: 77–86.PubMed
33.
go back to reference Patterson, C., M.A. Perrella, W.O. Endege, M. Yoshizumi, M.E. Lee, and E. Haber. 1996. Downregulation of vascular endothelial growth factor receptors by tumor necrosis factor-alpha in cultured human vascular endothelial cells. Journal of Clinical Investigation 98: 490–496.PubMedCrossRef Patterson, C., M.A. Perrella, W.O. Endege, M. Yoshizumi, M.E. Lee, and E. Haber. 1996. Downregulation of vascular endothelial growth factor receptors by tumor necrosis factor-alpha in cultured human vascular endothelial cells. Journal of Clinical Investigation 98: 490–496.PubMedCrossRef
34.
go back to reference Bardales, R.H., S.S. Xie, R.F. Schaefer, and S.M. Hsu. 1996. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. The American Journal of Pathology 149: 845–852.PubMed Bardales, R.H., S.S. Xie, R.F. Schaefer, and S.M. Hsu. 1996. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. The American Journal of Pathology 149: 845–852.PubMed
35.
go back to reference Fujita, M., K. Kuwano, R. Kunitake, N. Hagimoto, H. Miyazaki, Y. Kaneko, M. Kawasaki, T. Maeyama, and N. Hara. 1998. Endothelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. International Archives of Allergy and Immunology 117: 202–208.PubMedCrossRef Fujita, M., K. Kuwano, R. Kunitake, N. Hagimoto, H. Miyazaki, Y. Kaneko, M. Kawasaki, T. Maeyama, and N. Hara. 1998. Endothelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. International Archives of Allergy and Immunology 117: 202–208.PubMedCrossRef
36.
go back to reference Hotchkiss, R.S., P.E. Swanson, B.D. Freeman, K.W. Tinsley, J.P. Cobb, G.M. Matuschak, T.G. Buchman, and I.E. Karl. 1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine 27: 1230–1251.PubMedCrossRef Hotchkiss, R.S., P.E. Swanson, B.D. Freeman, K.W. Tinsley, J.P. Cobb, G.M. Matuschak, T.G. Buchman, and I.E. Karl. 1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine 27: 1230–1251.PubMedCrossRef
37.
go back to reference Kawasaki, M., K. Kuwano, N. Hagimoto, T. Matsuba, R. Kunitake, T. Tanaka, T. Maeyama, and N. Hara. 2000. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. The American Journal of Pathology 157: 597–603.PubMedCrossRef Kawasaki, M., K. Kuwano, N. Hagimoto, T. Matsuba, R. Kunitake, T. Tanaka, T. Maeyama, and N. Hara. 2000. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. The American Journal of Pathology 157: 597–603.PubMedCrossRef
38.
go back to reference Cardone, M.H., N. Roy, H.R. Stennicke, G.S. Salvesen, T.F. Franke, E. Stanbridge, S. Frisch, and J.C. Reed. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318–1321.PubMedCrossRef Cardone, M.H., N. Roy, H.R. Stennicke, G.S. Salvesen, T.F. Franke, E. Stanbridge, S. Frisch, and J.C. Reed. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318–1321.PubMedCrossRef
39.
go back to reference Del Peso, L., M. Gonzalez-Garcia, C. Page, R. Herrera, and G. Nuñez. 1997. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687–689.PubMedCrossRef Del Peso, L., M. Gonzalez-Garcia, C. Page, R. Herrera, and G. Nuñez. 1997. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687–689.PubMedCrossRef
40.
go back to reference Gerber, H.P., V. Dixit, and N. Ferrara. 1998. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. The Journal of Biological Chemistry 273: 13313–13316.PubMedCrossRef Gerber, H.P., V. Dixit, and N. Ferrara. 1998. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. The Journal of Biological Chemistry 273: 13313–13316.PubMedCrossRef
41.
go back to reference Tran, J., J. Rak, C. Sheehan, S.D. Saibil, E. LaCasse, R.G. Korneluk, and R.S. Kerbel. 1999. Marked induction of the IAP family antiapoptotic roteins survivin and XIAP by VEGF in vascular endothelial cells. Biochemical and Biophysical Research Communications 264: 781–788.PubMedCrossRef Tran, J., J. Rak, C. Sheehan, S.D. Saibil, E. LaCasse, R.G. Korneluk, and R.S. Kerbel. 1999. Marked induction of the IAP family antiapoptotic roteins survivin and XIAP by VEGF in vascular endothelial cells. Biochemical and Biophysical Research Communications 264: 781–788.PubMedCrossRef
42.
go back to reference Gupta, K., S. Kshirsagar, W. Li, L. Gui, S. Ramakrishnan, P. Gupta, P.Y. Law, and R.P. Hebbel. 1999. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Experimental Cell Research 247: 495–504.PubMedCrossRef Gupta, K., S. Kshirsagar, W. Li, L. Gui, S. Ramakrishnan, P. Gupta, P.Y. Law, and R.P. Hebbel. 1999. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Experimental Cell Research 247: 495–504.PubMedCrossRef
43.
go back to reference Kasahara, Y., R.M. Tuder, L. Taraseviciene-Stewart, T.D. Le Cras, S. Abman, P.K. Hirth, J. Waltenberger, and N.F. Voelkel. 2000. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. Journal of Clinical Investigation 106: 1311–1319.PubMedCrossRef Kasahara, Y., R.M. Tuder, L. Taraseviciene-Stewart, T.D. Le Cras, S. Abman, P.K. Hirth, J. Waltenberger, and N.F. Voelkel. 2000. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. Journal of Clinical Investigation 106: 1311–1319.PubMedCrossRef
44.
go back to reference Hamada, N., K. Kuwano, M. Yamada, N. Hagimoto, K. Hiasa, K. Egashira, N. Nakashima, T. Maeyama, M. Yoshimi, and Y. Nakanishi. 2005. Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. Journal of Immunology 175: 1224–1231. Hamada, N., K. Kuwano, M. Yamada, N. Hagimoto, K. Hiasa, K. Egashira, N. Nakashima, T. Maeyama, M. Yoshimi, and Y. Nakanishi. 2005. Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. Journal of Immunology 175: 1224–1231.
45.
go back to reference Nolan, A., M.D. Weiden, G. Thurston, and J.A. Gold. 2004. Vascular endothelial growth factor blockade reduces plasma cytokines in a murine model of polymicrobial sepsis. Inflammation 28: 271–278.PubMedCrossRef Nolan, A., M.D. Weiden, G. Thurston, and J.A. Gold. 2004. Vascular endothelial growth factor blockade reduces plasma cytokines in a murine model of polymicrobial sepsis. Inflammation 28: 271–278.PubMedCrossRef
Metadata
Title
Time-Dependent Alterations of VEGF and Its Signaling Molecules in Acute Lung Injury in a Rat Model of Sepsis
Authors
Subrina Jesmin
Sohel Zaedi
A. M. Shahidul Islam
S. Nusrat Sultana
Yoshio Iwashima
Takeshi Wada
Naoto Yamaguchi
Michiaki Hiroe
Satoshi Gando
Publication date
01-04-2012
Publisher
Springer US
Published in
Inflammation / Issue 2/2012
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-011-9337-1

Other articles of this Issue 2/2012

Inflammation 2/2012 Go to the issue