Skip to main content
Top
Published in: Respiratory Research 1/2018

Open Access 01-12-2018 | Research

Landscape of transcription and long non-coding RNAs reveals new insights into the inflammatory and fibrotic response following ventilator-induced lung injury

Authors: Lu Wang, Nannan Zhang, Yi Zhang, Jingen Xia, Qingyuan Zhan, Chen Wang

Published in: Respiratory Research | Issue 1/2018

Login to get access

Abstract

Background

Mechanical ventilation can cause ventilator-induced lung injury (VILI) and lung fibrosis; however, the underlying mechanisms are still not fully understood. RNA sequencing is a powerful means for detecting vitally important protein-coding transcripts and long non-coding RNAs (lncRNAs) on a genome-wide scale, which may be helpful for reducing this knowledge gap.

Methods

Ninety C57BL/6 mice were subjected to either high tidal volume ventilation or sham operation, and then mice with ventilation were randomly allocated to periods of recovery for 0, 1, 3, 5, 7, 14, 21, or 28 days. Lung histopathology, wet-to-dry weight ratio, hydroxyproline concentration, and transforming growth factor beta 1 (TGF-β1) levels were determined to evaluate the progression of inflammation and fibrosis. To compare sham-operated lungs, and 0- and 7-day post-ventilated lungs, RNA sequencing was used to elucidate the expression patterns, biological processes, and functional pathways involved in inflammation and fibrosis.

Results

A well-defined fibrotic response was most pronounced on day 7 post-ventilation. Pairwise comparisons among the sham and VILI groups showed a total of 1297 differentially expressed transcripts (DETs). Gene Ontology analysis determined that the stimulus response and immune response were the most important factors involved in inflammation and fibrosis, respectively. Kyoto Encyclopedia of Genes and Genomes analysis revealed that mechanistic target of rapamycin (mTOR), Janus kinase-signal transducer and activator of transcription (JAK/STAT), and cyclic adenosine monophosphate (cAMP) signaling were implicated in early inflammation; whereas TGF-β, hypoxia inducible factor-1 (HIF-1), Toll-like receptor (TLR), and kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways were significantly involved in subsequent fibrosis. Additionally, 332 DE lncRNAs were identified and enriched in the processes of cellular and biological regulation. These lncRNAs may potentially regulate fibrosis through signaling pathways such as wingless/integrase-1 (Wnt), HIF-1, and TLR.

Conclusions

This is the first transcriptome study to reveal all of the transcript expression patterns and critical pathways involved in the VILI fibrotic process based on the early inflammatory state, and to show the important DE lncRNAs regulated in inflammation and fibrosis. Together, the results of this study provide novel perspectives into the potential molecular mechanisms underlying VILI and subsequent fibrosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sahetya SK, Mancebo J, Brower RG. 50 years of research in ARDS. Tidal volume selection in the acute respiratory distress syndrome. Am J Resp Crit Care. 2017;196:1519–25.CrossRef Sahetya SK, Mancebo J, Brower RG. 50 years of research in ARDS. Tidal volume selection in the acute respiratory distress syndrome. Am J Resp Crit Care. 2017;196:1519–25.CrossRef
2.
go back to reference Slutsky AS. History of mechanical ventilation. From Vesalius to ventilator-induced lung injury. Am J Resp Crit Care. 2015;191:1106–15.CrossRef Slutsky AS. History of mechanical ventilation. From Vesalius to ventilator-induced lung injury. Am J Resp Crit Care. 2015;191:1106–15.CrossRef
4.
go back to reference Curley GF, Laffey JG, Zhang H, Slutsky AS. Biotrauma and ventilator induced lung injury: clinical implications. Chest. 2016;150:1109–17.CrossRefPubMed Curley GF, Laffey JG, Zhang H, Slutsky AS. Biotrauma and ventilator induced lung injury: clinical implications. Chest. 2016;150:1109–17.CrossRefPubMed
5.
go back to reference Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.CrossRefPubMed Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.CrossRefPubMed
6.
go back to reference De DG, Del TM, Rustichini L, Cosimini P, Giunta F, Hudson LD, et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Resp Crit Care. 2002;165:1271–4.CrossRef De DG, Del TM, Rustichini L, Cosimini P, Giunta F, Hudson LD, et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Resp Crit Care. 2002;165:1271–4.CrossRef
7.
go back to reference Ards N. Ventilation with lower tidal volume as compared with traditional tidal volumes for acute lung injury. The Acute Respiratory Distress Syndrome Network. New Engl J Med. 2000;342:1301–8. Ards N. Ventilation with lower tidal volume as compared with traditional tidal volumes for acute lung injury. The Acute Respiratory Distress Syndrome Network. New Engl J Med. 2000;342:1301–8.
8.
go back to reference Martin C, Papazian L, Payan MJ, Saux P, Gouin F. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients. Chest. 1995;107:196–200.CrossRefPubMed Martin C, Papazian L, Payan MJ, Saux P, Gouin F. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients. Chest. 1995;107:196–200.CrossRefPubMed
9.
go back to reference Cabrerabenitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, et al. Mechanical ventilation–associated lung fibrosis in acute respiratory distress syndrome a significant contributor to poor outcome. Anesthesiology. 2014;121:189–98.CrossRef Cabrerabenitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, et al. Mechanical ventilation–associated lung fibrosis in acute respiratory distress syndrome a significant contributor to poor outcome. Anesthesiology. 2014;121:189–98.CrossRef
10.
go back to reference Papazian L, Doddoli C, Chetaille B, Gernez Y, Thirion X, Roch A, et al. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit Care Med. 2007;35:755–62.CrossRefPubMed Papazian L, Doddoli C, Chetaille B, Gernez Y, Thirion X, Roch A, et al. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit Care Med. 2007;35:755–62.CrossRefPubMed
11.
go back to reference Madtes DK, Rubenfeld G, Klima LD, Milberg JA, Steinberg KP, Martin TR, et al. Elevated transforming growth factor-alpha levels in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1998;158:424–30.CrossRefPubMed Madtes DK, Rubenfeld G, Klima LD, Milberg JA, Steinberg KP, Martin TR, et al. Elevated transforming growth factor-alpha levels in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1998;158:424–30.CrossRefPubMed
12.
go back to reference Cabrerabenítez NE, Parotto M, Post M, Han B, Spieth PM, Cheng WE, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med. 2012;40:510–7.CrossRef Cabrerabenítez NE, Parotto M, Post M, Han B, Spieth PM, Cheng WE, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med. 2012;40:510–7.CrossRef
13.
go back to reference Curley GF, Contreras M, Higgins B, O'Kane C, Mcauley DF, O'Toole D, et al. Evolution of the inflammatory and fibroproliferative responses during resolution and repair after ventilator-induced lung injury in the rat. Anesthesiology. 2011;115:1022–32.CrossRefPubMed Curley GF, Contreras M, Higgins B, O'Kane C, Mcauley DF, O'Toole D, et al. Evolution of the inflammatory and fibroproliferative responses during resolution and repair after ventilator-induced lung injury in the rat. Anesthesiology. 2011;115:1022–32.CrossRefPubMed
14.
go back to reference Villar J, Cabrera-Benítez NE, Valladares F, García-Hernández S, Ramos-Nuez Á, Martín-Barrasa JL, et al. Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury. Crit Care. 2015;19:1–9.CrossRef Villar J, Cabrera-Benítez NE, Valladares F, García-Hernández S, Ramos-Nuez Á, Martín-Barrasa JL, et al. Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury. Crit Care. 2015;19:1–9.CrossRef
15.
go back to reference Marshall RP, Bellingan G, Webb S, Puddicombe A, Goldsack N, Mcanulty RJ, et al. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Resp Crit Care. 2000;162:1783–8.CrossRef Marshall RP, Bellingan G, Webb S, Puddicombe A, Goldsack N, Mcanulty RJ, et al. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Resp Crit Care. 2000;162:1783–8.CrossRef
16.
go back to reference Lv Z, Wang Y, Liu YJ, et al. NLRP3 Inflammasome activation contributes to mechanical stretch-induced endothelial-mesenchymal transition and pulmonary fibrosis. Crit Care Med. 2018;46:e49–58.CrossRefPubMed Lv Z, Wang Y, Liu YJ, et al. NLRP3 Inflammasome activation contributes to mechanical stretch-induced endothelial-mesenchymal transition and pulmonary fibrosis. Crit Care Med. 2018;46:e49–58.CrossRefPubMed
17.
go back to reference De KE, Pa TH. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet. 2015;31:128–39. De KE, Pa TH. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet. 2015;31:128–39.
18.
go back to reference Villar J, Cabrera NE, Casula M, Valladares F, Flores C, López-Aguilar J, et al. Wnt/β-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury. Intens Care Med. 2011;37:1201–9.CrossRef Villar J, Cabrera NE, Casula M, Valladares F, Flores C, López-Aguilar J, et al. Wnt/β-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury. Intens Care Med. 2011;37:1201–9.CrossRef
19.
go back to reference Gonzálezlópez A, Astudillo A, Garcíaprieto E, Fernándezgarcía MS, Lópezvázquez A, Batallasolís E, et al. Inflammation and matrix remodeling during repair of ventilator-induced lung injury. Am J Physiol-Lung C. 2011;301:500–9.CrossRef Gonzálezlópez A, Astudillo A, Garcíaprieto E, Fernándezgarcía MS, Lópezvázquez A, Batallasolís E, et al. Inflammation and matrix remodeling during repair of ventilator-induced lung injury. Am J Physiol-Lung C. 2011;301:500–9.CrossRef
20.
go back to reference Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
21.
go back to reference Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, a. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, a. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.
22.
go back to reference Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41:e166.CrossRefPubMedPubMedCentral Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41:e166.CrossRefPubMedPubMedCentral
23.
go back to reference Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35:W345–9.CrossRefPubMedPubMedCentral Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35:W345–9.CrossRefPubMedPubMedCentral
24.
go back to reference Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.CrossRefPubMed Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.CrossRefPubMed
25.
go back to reference Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 2011;27:i275–82.CrossRefPubMedPubMedCentral Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 2011;27:i275–82.CrossRefPubMedPubMedCentral
26.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.
28.
go back to reference Mao X, Tao C, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the kegg orthology (ko) as a controlled vocabulary. Bioinformatics. 2005;21:3787–93.CrossRefPubMed Mao X, Tao C, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the kegg orthology (ko) as a controlled vocabulary. Bioinformatics. 2005;21:3787–93.CrossRefPubMed
29.
go back to reference Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. Kegg for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:d480–4.CrossRefPubMed Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. Kegg for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:d480–4.CrossRefPubMed
30.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
31.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMed
32.
go back to reference Zhou J, Xiong Q, Chen H, Yang C, Fan Y. Identification of the spinal expression profile of non-coding RNAs involved in neuropathic pain following spared nerve injury by sequence analysis. Front Mol Neurosci. 2017;10:91.PubMedPubMedCentral Zhou J, Xiong Q, Chen H, Yang C, Fan Y. Identification of the spinal expression profile of non-coding RNAs involved in neuropathic pain following spared nerve injury by sequence analysis. Front Mol Neurosci. 2017;10:91.PubMedPubMedCentral
33.
go back to reference Li LF, Lee CS, Liu YY, Chang CH, Lin CW, Chiu LC, et al. Activation of Src-dependent Smad3 signaling mediates the neutrophilic inflammation and oxidative stress in hyperoxia-augmented ventilator-induced lung injury. Respir Res. 2015;16:1–14.CrossRef Li LF, Lee CS, Liu YY, Chang CH, Lin CW, Chiu LC, et al. Activation of Src-dependent Smad3 signaling mediates the neutrophilic inflammation and oxidative stress in hyperoxia-augmented ventilator-induced lung injury. Respir Res. 2015;16:1–14.CrossRef
34.
go back to reference Chen CM, Cheng KC, Li CF, Zhang H. The protective effects of glutamine in a rat model of ventilator-induced lung injury. J Thorac Dis. 2014;6:1704–13.PubMedPubMedCentral Chen CM, Cheng KC, Li CF, Zhang H. The protective effects of glutamine in a rat model of ventilator-induced lung injury. J Thorac Dis. 2014;6:1704–13.PubMedPubMedCentral
35.
go back to reference Cabrera S, Selman M, Lonzano-Bolaños A, Konishi K, Richards TJ, Kaminski N, et al. Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis. Am J Physiol-Lung C. 2013;304:593–601.CrossRef Cabrera S, Selman M, Lonzano-Bolaños A, Konishi K, Richards TJ, Kaminski N, et al. Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis. Am J Physiol-Lung C. 2013;304:593–601.CrossRef
36.
go back to reference Otulakowski G, Engelberts D, Arima H, Hirate H, Bayir H, Post M, et al. α-Tocopherol transfer protein mediates protective hypercapnia in murine ventilator-induced lung injury. Thorax. 2017;72:538–49.CrossRefPubMed Otulakowski G, Engelberts D, Arima H, Hirate H, Bayir H, Post M, et al. α-Tocopherol transfer protein mediates protective hypercapnia in murine ventilator-induced lung injury. Thorax. 2017;72:538–49.CrossRefPubMed
37.
go back to reference Acostaherrera M, Lorenzodiaz F, Pinoyanes M, Corrales A, Valladares F, Klassert TE, et al. Correction: lung transcriptomics during protective ventilatory support in sepsis-induced acute lung injury. PLoS One. 2015;10:e0145696.CrossRef Acostaherrera M, Lorenzodiaz F, Pinoyanes M, Corrales A, Valladares F, Klassert TE, et al. Correction: lung transcriptomics during protective ventilatory support in sepsis-induced acute lung injury. PLoS One. 2015;10:e0145696.CrossRef
39.
go back to reference Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123:437–8.CrossRefPubMed Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123:437–8.CrossRefPubMed
40.
go back to reference Tsujino K, Reed NI, Atakilit A, Ren X, Sheppard D. Transforming growth factor-β plays divergent roles in modulating vascular remodeling, inflammation, and pulmonary fibrosis in a murine model of scleroderma. Am J Physiol-Lung C. 2017;312:L22–31.CrossRef Tsujino K, Reed NI, Atakilit A, Ren X, Sheppard D. Transforming growth factor-β plays divergent roles in modulating vascular remodeling, inflammation, and pulmonary fibrosis in a murine model of scleroderma. Am J Physiol-Lung C. 2017;312:L22–31.CrossRef
41.
go back to reference Hu Y, Lou J, Mao YY, Lai TW, Liu LY, Zhu C, et al. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury. Autophagy. 2016;12:2286–99.CrossRefPubMedPubMedCentral Hu Y, Lou J, Mao YY, Lai TW, Liu LY, Zhu C, et al. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury. Autophagy. 2016;12:2286–99.CrossRefPubMedPubMedCentral
42.
go back to reference Zhao J, Yu H, Liu Y, Gibson SA, Yan Z, Xu X, et al. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311:L868–80.CrossRefPubMedPubMedCentral Zhao J, Yu H, Liu Y, Gibson SA, Yan Z, Xu X, et al. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311:L868–80.CrossRefPubMedPubMedCentral
43.
44.
go back to reference Meng X, NikolicPaterson DJ, Lan HY. TGF-[beta]: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38.CrossRefPubMed Meng X, NikolicPaterson DJ, Lan HY. TGF-[beta]: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38.CrossRefPubMed
45.
46.
go back to reference Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature. 2017;548:343–6.CrossRefPubMedPubMedCentral Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature. 2017;548:343–6.CrossRefPubMedPubMedCentral
47.
49.
go back to reference Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Therapeut. 2015;147:91–110.CrossRef Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Therapeut. 2015;147:91–110.CrossRef
50.
go back to reference Sun H, Chen J, Qian W, Kang J, Wang J, Jiang L, et al. Integrated long non-codingrnaanalyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20:1234–46.CrossRefPubMedPubMedCentral Sun H, Chen J, Qian W, Kang J, Wang J, Jiang L, et al. Integrated long non-codingrnaanalyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20:1234–46.CrossRefPubMedPubMedCentral
51.
go back to reference Liu G, Bi Y, Wang R, Shen B, Zhang Y, Yang H, et al. Kinase AKT1 negatively controls neutrophil recruitment and function in mice. J Immunol. 2013;191:2680–90.CrossRefPubMed Liu G, Bi Y, Wang R, Shen B, Zhang Y, Yang H, et al. Kinase AKT1 negatively controls neutrophil recruitment and function in mice. J Immunol. 2013;191:2680–90.CrossRefPubMed
52.
go back to reference Baarsma HA, Königshoff M. ‘WNT-er is coming’: WNT signalling in chronic lung diseases. Thorax. 2017;72:746–59.CrossRefPubMed Baarsma HA, Königshoff M. ‘WNT-er is coming’: WNT signalling in chronic lung diseases. Thorax. 2017;72:746–59.CrossRefPubMed
53.
go back to reference Villar J, Cabrera NE, Valladares F, Casula M, Flores C, Blanch L, et al. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs. PLoS One. 2011;6:e23914.CrossRefPubMedPubMedCentral Villar J, Cabrera NE, Valladares F, Casula M, Flores C, Blanch L, et al. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs. PLoS One. 2011;6:e23914.CrossRefPubMedPubMedCentral
Metadata
Title
Landscape of transcription and long non-coding RNAs reveals new insights into the inflammatory and fibrotic response following ventilator-induced lung injury
Authors
Lu Wang
Nannan Zhang
Yi Zhang
Jingen Xia
Qingyuan Zhan
Chen Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2018
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-018-0822-z

Other articles of this Issue 1/2018

Respiratory Research 1/2018 Go to the issue