Skip to main content
Top
Published in: Respiratory Research 1/2018

Open Access 01-12-2018 | Research

Acute lung injury by gastric fluid instillation: activation of myofibroblast apoptosis during injury resolution

Authors: Pedro Ayala, Jorge Torres, Raúl Vivar, Manuel Meneses, Pablo Olmos, Tamara San Martin, Gisella R. Borzone

Published in: Respiratory Research | Issue 1/2018

Login to get access

Abstract

Background

Gastric contents aspiration in humans has variable consequences depending on the volume of aspirate, ranging from subclinical pneumonitis to respiratory failure with up to 70% mortality. Several experimental approaches have been used to study this condition. In a model of single orotracheal instillation of gastric fluid we have shown that severe acute lung injury evolves from a pattern of diffuse alveolar damage to one of organizing pneumonia (OP), that later resolves leaving normal lung architecture. Little is known about mechanisms of injury resolution after a single aspiration that could be dysregulated with repetitive aspirations. We hypothesized that, in a similar way to cutaneous wound healing, apoptosis may participate in lung injury resolution by reducing the number of myofibroblasts and by affecting the balance between proteases and antiproteases. Our aim was to study activation of apoptosis as well as MMP-2/TIMP-2 balance in the sub-acute phase (4–14 days) of gastric fluid-induced lung injury.

Methods

Anesthesized Sprague-Dawley rats received a single orotracheal instillation of gastric fluid and were euthanized 4, 7 and 14 days later (n = 6/group). In lung tissue we studied caspase-3 activation and its location by double immunofluorescence for cleaved caspase-3 or TUNEL and alpha-SMA. MMP-2/TIMP-2 balance was studied by zymography and Western blot. BALF levels of TGF-β1 were measured by ELISA.

Results

An OP pattern with Masson bodies and granulomas was seen at days 4 and 7 that was no longer present at day 14. Cleaved caspase-3 increased at day 7 and was detected by immunofluorescence in Masson body-alpha-SMA-positive and –negative cells. TUNEL-positive cells at days 4 and 7 were located mainly in Masson bodies. Distribution of cleaved caspase-3 and TUNEL-positive cells at day 14 was similar to that in controls. At the peak of apoptosis (day 7), an imbalance between MMP-2 activity and TIMP-2 expression was produced by reduction in TIMP-2 expression.

Conclusions

Apoptosis is activated in Masson body-alpha-SMA–positive and –negative cells during the sub-acute phase of gastric fluid-induced lung injury. This mechanism likely contributes to OP resolution, by reducing myofibroblast number and new collagen production. In addition, pre-formed collagen degradation is favored by an associated MMP-2/TIMP-2 imbalance.
Literature
1.
go back to reference DeLegge MH. Aspiration pneumonia: incidence, mortality, and at-risk populations. J Parenter Enter Nutr. 2002;26:S19–25.CrossRef DeLegge MH. Aspiration pneumonia: incidence, mortality, and at-risk populations. J Parenter Enter Nutr. 2002;26:S19–25.CrossRef
2.
go back to reference Amigoni M, Bellani G, Scanziani M, Masson S, Bertoli E, Radaelli E, Patroniti N, Di Lelio A, Pesenti A, Latini R. Lung injury and recovery in a murine model of unilateral acid aspiration: functional, biochemical, and morphologic characterization. Anesthesiology. 2008;108:1037–46.CrossRefPubMed Amigoni M, Bellani G, Scanziani M, Masson S, Bertoli E, Radaelli E, Patroniti N, Di Lelio A, Pesenti A, Latini R. Lung injury and recovery in a murine model of unilateral acid aspiration: functional, biochemical, and morphologic characterization. Anesthesiology. 2008;108:1037–46.CrossRefPubMed
3.
go back to reference Puig F, Herrero R, Guillamat-Prats R, Gómez MN, Tijero J, Chimenti L, Stelmakh O, Blanch L, Serrano-Mollar A, Matthay MA, Artigas A. A new experimental model of acid- and endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2016;311:229–37. Puig F, Herrero R, Guillamat-Prats R, Gómez MN, Tijero J, Chimenti L, Stelmakh O, Blanch L, Serrano-Mollar A, Matthay MA, Artigas A. A new experimental model of acid- and endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2016;311:229–37.
4.
go back to reference Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation: a translational mouse model. Eur Respir J. 2012;39:1162–70.CrossRefPubMed Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation: a translational mouse model. Eur Respir J. 2012;39:1162–70.CrossRefPubMed
5.
go back to reference Teabeaut JR 2nd. Aspiration of gastric contents: an experimental study. Am J Pathol. 1952;28:51–67. Teabeaut JR 2nd. Aspiration of gastric contents: an experimental study. Am J Pathol. 1952;28:51–67.
6.
go back to reference Knight PR, Davidson BA, Nader ND, Helinski JD, Marschke CJ, Russo TA, Hutson AD, Notter RH, Holm BA. Progressive, severe lung injury secondary to the interaction of insults in gastric aspiration. Exp Lung Res. 2004;30:535–57.CrossRefPubMed Knight PR, Davidson BA, Nader ND, Helinski JD, Marschke CJ, Russo TA, Hutson AD, Notter RH, Holm BA. Progressive, severe lung injury secondary to the interaction of insults in gastric aspiration. Exp Lung Res. 2004;30:535–57.CrossRefPubMed
7.
go back to reference Araos J, Ayala P, Meneses M, Contreras R, Cutiño A, Montalva R, Tazelaar H, Borzone G. Resolution of lung injury after a single event of aspiration: a model of bilateral instillation of whole gastric fluid. Am J Pathol. 2015;185:2698–708.CrossRefPubMed Araos J, Ayala P, Meneses M, Contreras R, Cutiño A, Montalva R, Tazelaar H, Borzone G. Resolution of lung injury after a single event of aspiration: a model of bilateral instillation of whole gastric fluid. Am J Pathol. 2015;185:2698–708.CrossRefPubMed
9.
go back to reference Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle). 2015;4:119–36.CrossRef Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle). 2015;4:119–36.CrossRef
11.
go back to reference Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995;146:56–66.PubMedPubMedCentral Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995;146:56–66.PubMedPubMedCentral
12.
go back to reference Martin TR, Matute-Bello G. Apoptosis in the pathogenesis and resolution of acute lung injury. In: Choi AMK, editor. Acute respiratory distress syndrome. New York: Informa Healthcare USA, Inc; 2010. p. 93–108. Martin TR, Matute-Bello G. Apoptosis in the pathogenesis and resolution of acute lung injury. In: Choi AMK, editor. Acute respiratory distress syndrome. New York: Informa Healthcare USA, Inc; 2010. p. 93–108.
14.
go back to reference Bardales RH, Xie S-S, Schaefer RF, Hsut S-M. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol. 1996;149:845–52.PubMedPubMedCentral Bardales RH, Xie S-S, Schaefer RF, Hsut S-M. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol. 1996;149:845–52.PubMedPubMedCentral
15.
go back to reference Uhal BD, Joshi I, True AL, Mundle S, Raza A, Pardo A, Selman M. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol. 1995;269:L819–28.CrossRef Uhal BD, Joshi I, True AL, Mundle S, Raza A, Pardo A, Selman M. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol. 1995;269:L819–28.CrossRef
16.
go back to reference Fehrenbach H, Kasper M, Koslowski R, Pan T, Schuh D, Müller M, Mason RJ. Alveolar epithelial type II cell apoptosis in vivo during resolution of keratinocyte growth factor-induced hyperplasia in the rat. Histochem Cell Biol. 2000;114:49–61.PubMed Fehrenbach H, Kasper M, Koslowski R, Pan T, Schuh D, Müller M, Mason RJ. Alveolar epithelial type II cell apoptosis in vivo during resolution of keratinocyte growth factor-induced hyperplasia in the rat. Histochem Cell Biol. 2000;114:49–61.PubMed
17.
go back to reference Patel BV, Wilson MR, O’Dea K, Takata M. TNF-induced death signaling triggers alveolar epithelial dysfunction in acute lung injury. J Immunol. 2013;190:4274–82.CrossRefPubMedPubMedCentral Patel BV, Wilson MR, O’Dea K, Takata M. TNF-induced death signaling triggers alveolar epithelial dysfunction in acute lung injury. J Immunol. 2013;190:4274–82.CrossRefPubMedPubMedCentral
18.
go back to reference Zhang K, Rekhter MD, Gordon D, Phan SH. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis: a combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994;145:114–25.PubMedPubMedCentral Zhang K, Rekhter MD, Gordon D, Phan SH. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis: a combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994;145:114–25.PubMedPubMedCentral
20.
go back to reference Toth M, Sohail A, Fridman R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methods Mol Biol. 2012;878:121–35.CrossRefPubMed Toth M, Sohail A, Fridman R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methods Mol Biol. 2012;878:121–35.CrossRefPubMed
21.
go back to reference Sokal RR, Rohlf FJ. Biometry. New York: WH Freeman; 1981. Sokal RR, Rohlf FJ. Biometry. New York: WH Freeman; 1981.
23.
24.
go back to reference Brown DL, Kao WW, Greehalgh DG. Apoptosis down-regulates inflammation under the advancing epithelial wound edge: delayed patterns in diabetes and improvement with topical growth factors. Surgery. 1997;121:372–80.CrossRefPubMed Brown DL, Kao WW, Greehalgh DG. Apoptosis down-regulates inflammation under the advancing epithelial wound edge: delayed patterns in diabetes and improvement with topical growth factors. Surgery. 1997;121:372–80.CrossRefPubMed
25.
go back to reference Polunovsky VA, Chen B, Henke C, Snover D, Wendt C, Ingbar DH, Bitterman PB. Role of mesenchymal cell death in lung remodeling after injury. J Clin Invest. 1993;92:388–97.CrossRefPubMedPubMedCentral Polunovsky VA, Chen B, Henke C, Snover D, Wendt C, Ingbar DH, Bitterman PB. Role of mesenchymal cell death in lung remodeling after injury. J Clin Invest. 1993;92:388–97.CrossRefPubMedPubMedCentral
26.
go back to reference Hadden HL, Henke CA. Induction of lung fibroblast apoptosis by soluble fibronectin peptides. Am J Respir Crit Care Med. 2000;162:1553–60.CrossRefPubMed Hadden HL, Henke CA. Induction of lung fibroblast apoptosis by soluble fibronectin peptides. Am J Respir Crit Care Med. 2000;162:1553–60.CrossRefPubMed
27.
go back to reference Lappi-Blanco E, Soini Y, Pääkkö P. Apoptotic activity is increased in the newly formed fibromyxoid connective tissue in bronchiolitis obliterans organizing pneumonia. Lung. 1999;177:367–76.CrossRefPubMed Lappi-Blanco E, Soini Y, Pääkkö P. Apoptotic activity is increased in the newly formed fibromyxoid connective tissue in bronchiolitis obliterans organizing pneumonia. Lung. 1999;177:367–76.CrossRefPubMed
28.
go back to reference Sisson TH, Maher TM, Ajayi IO, King JE, Higgins PDR, Booth AJ, Sagana RL, Huang SK, White ES, Moore BB, Horowitz JC. Increased survivin expression contributes to apoptosis-resistance in IPF fibroblasts. Adv Biosci Biotechnol. 2012;3:657–64.CrossRefPubMedPubMedCentral Sisson TH, Maher TM, Ajayi IO, King JE, Higgins PDR, Booth AJ, Sagana RL, Huang SK, White ES, Moore BB, Horowitz JC. Increased survivin expression contributes to apoptosis-resistance in IPF fibroblasts. Adv Biosci Biotechnol. 2012;3:657–64.CrossRefPubMedPubMedCentral
29.
go back to reference Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat M-L, Gabbiani G. The Myofibroblast. One function, multiple origins. Am J Pathol. 2007;170:1807–16.CrossRefPubMedPubMedCentral Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat M-L, Gabbiani G. The Myofibroblast. One function, multiple origins. Am J Pathol. 2007;170:1807–16.CrossRefPubMedPubMedCentral
30.
go back to reference Zhang HY, Phan SH. Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol. 1999;21:658–65.CrossRefPubMed Zhang HY, Phan SH. Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol. 1999;21:658–65.CrossRefPubMed
31.
go back to reference Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H, Cui Z, Thannickal VJ. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem. 2004;279:1359–67.CrossRefPubMed Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H, Cui Z, Thannickal VJ. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem. 2004;279:1359–67.CrossRefPubMed
32.
go back to reference Bian J, Sun Y. Transcriptional activation by p53 of the human type IV collagenase (gelatinase a or matrix metalloproteinase 2) promoter. Mol Cell Biol. 1997;17:6330–8.CrossRefPubMedPubMedCentral Bian J, Sun Y. Transcriptional activation by p53 of the human type IV collagenase (gelatinase a or matrix metalloproteinase 2) promoter. Mol Cell Biol. 1997;17:6330–8.CrossRefPubMedPubMedCentral
33.
go back to reference Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N. Localization of matrix metalloproteinases-1, −2, and −9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab Investig. 1998;78:687–98.PubMed Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N. Localization of matrix metalloproteinases-1, −2, and −9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab Investig. 1998;78:687–98.PubMed
34.
go back to reference Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102:538–49.CrossRefPubMedPubMedCentral Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102:538–49.CrossRefPubMedPubMedCentral
35.
go back to reference Hartland SN, Murphy F, Aucott RL, Abergel A, Zhou X, Waung J, Patel N, Bradshaw C, Collins J, Mann D, Benyon RC, Iredale JP. Active matrix metalloproteinase-2 promotes apoptosis of hepatic stellate cells via the cleavage of cellular N-cadherin. Liver Int. 2009;29:966–78.CrossRefPubMed Hartland SN, Murphy F, Aucott RL, Abergel A, Zhou X, Waung J, Patel N, Bradshaw C, Collins J, Mann D, Benyon RC, Iredale JP. Active matrix metalloproteinase-2 promotes apoptosis of hepatic stellate cells via the cleavage of cellular N-cadherin. Liver Int. 2009;29:966–78.CrossRefPubMed
Metadata
Title
Acute lung injury by gastric fluid instillation: activation of myofibroblast apoptosis during injury resolution
Authors
Pedro Ayala
Jorge Torres
Raúl Vivar
Manuel Meneses
Pablo Olmos
Tamara San Martin
Gisella R. Borzone
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2018
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-018-0763-6

Other articles of this Issue 1/2018

Respiratory Research 1/2018 Go to the issue