Skip to main content
Top
Published in: Respiratory Research 1/2018

Open Access 01-12-2018 | Review

Airway disease phenotypes in animal models of cystic fibrosis

Authors: Alexandra McCarron, Martin Donnelley, David Parsons

Published in: Respiratory Research | Issue 1/2018

Login to get access

Abstract

In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Literature
2.
go back to reference Keiser NW, Engelhardt JF. New animal models of cystic fibrosis: what are they teaching us? Curr Opin Pulm Med. 2011;17:478–83.PubMedPubMedCentral Keiser NW, Engelhardt JF. New animal models of cystic fibrosis: what are they teaching us? Curr Opin Pulm Med. 2011;17:478–83.PubMedPubMedCentral
4.
go back to reference Tuggle KL, Birket SE, Cui X, Hong J, Warren J, Reid L, Chambers A, Ji D, Gamber K, Chu KK, et al. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One. 2014;9:e91253. Tuggle KL, Birket SE, Cui X, Hong J, Warren J, Reid L, Chambers A, Ji D, Gamber K, Chu KK, et al. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One. 2014;9:e91253.
5.
go back to reference Sun XS, Sui HS, Fisher JT, Yan ZY, Liu XM, Cho HJ, Joo NS, Zhang YL, Zhou WH, Yi YL, et al. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest. 2010;120:3149–60.PubMedPubMedCentralCrossRef Sun XS, Sui HS, Fisher JT, Yan ZY, Liu XM, Cho HJ, Joo NS, Zhang YL, Zhou WH, Yi YL, et al. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest. 2010;120:3149–60.PubMedPubMedCentralCrossRef
6.
go back to reference Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, et al. Production of CFTR-null and CFTR-Delta F508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 2008;118:1571–77.PubMedPubMedCentralCrossRef Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, et al. Production of CFTR-null and CFTR-Delta F508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 2008;118:1571–77.PubMedPubMedCentralCrossRef
7.
go back to reference Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kröner C, et al. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med. 2012;90:597–608.PubMedCrossRef Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kröner C, et al. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med. 2012;90:597–608.PubMedCrossRef
8.
go back to reference Xu Jie, Rajagopolan Carthic, Hou Xia, Chen Eugene, Boucher Richard C, Fei S. Rabbit models for cystic fibrosis. Pediatr Pulmonol. 2016;51 Suppl 45:115–93. Xu Jie, Rajagopolan Carthic, Hou Xia, Chen Eugene, Boucher Richard C, Fei S. Rabbit models for cystic fibrosis. Pediatr Pulmonol. 2016;51 Suppl 45:115–93.
12.
go back to reference Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol. 2014;52:47–57.PubMedCrossRef Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol. 2014;52:47–57.PubMedCrossRef
13.
go back to reference Boucher RC. An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev. 2002;54:1359–71.PubMedCrossRef Boucher RC. An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev. 2002;54:1359–71.PubMedCrossRef
14.
go back to reference Boucher RC. Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med. 2007;261:5–16.PubMedCrossRef Boucher RC. Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med. 2007;261:5–16.PubMedCrossRef
15.
go back to reference Tarran R, Grubb BR, Parsons D, Picher M, Hirsh AJ, Davis CW, Boucher RC. The CF salt controversy: in vivo observations and therapeutic approaches. Mol Cell. 2001;8:149–58.PubMedCrossRef Tarran R, Grubb BR, Parsons D, Picher M, Hirsh AJ, Davis CW, Boucher RC. The CF salt controversy: in vivo observations and therapeutic approaches. Mol Cell. 2001;8:149–58.PubMedCrossRef
16.
go back to reference Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95:1005–15.PubMedCrossRef Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95:1005–15.PubMedCrossRef
17.
go back to reference Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med. 2007;58:157–70.PubMedCrossRef Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med. 2007;58:157–70.PubMedCrossRef
19.
go back to reference Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH. An animal-model for cystic-fibrosis made by gene targeting. Science. 1992;257:1083–8.PubMedCrossRef Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH. An animal-model for cystic-fibrosis made by gene targeting. Science. 1992;257:1083–8.PubMedCrossRef
20.
go back to reference Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, de Jonge HR, Scholte BJ. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros. 2011;10:S152–71.PubMedCrossRef Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, de Jonge HR, Scholte BJ. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros. 2011;10:S152–71.PubMedCrossRef
21.
go back to reference Guilbault C, Saeed Z, Downey GP, Radzioch D. Cystic fibrosis mouse models. Am J Respir Cell Mol Biol. 2007;36:1–7.PubMedCrossRef Guilbault C, Saeed Z, Downey GP, Radzioch D. Cystic fibrosis mouse models. Am J Respir Cell Mol Biol. 2007;36:1–7.PubMedCrossRef
23.
go back to reference Egan ME. How useful are cystic fibrosis mouse models? Drug Discov Today Dis Models. 2009;6:35–41.CrossRef Egan ME. How useful are cystic fibrosis mouse models? Drug Discov Today Dis Models. 2009;6:35–41.CrossRef
24.
go back to reference Zhou L, Dey CR, Wert SE, Duvall MD, Frizzell RA, Whitsett JA. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science. 1994;266:1705–8.PubMedCrossRef Zhou L, Dey CR, Wert SE, Duvall MD, Frizzell RA, Whitsett JA. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science. 1994;266:1705–8.PubMedCrossRef
25.
go back to reference Grubb BR, Boucher RC. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev. 1999;79:S193–214.PubMedCrossRef Grubb BR, Boucher RC. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev. 1999;79:S193–214.PubMedCrossRef
26.
go back to reference Hodges CAGL, Drumm ML, Clarke LL. Mouse models expressing human CFTR to test CFTR-directed therapies. Pediatr Pulmonol. 2016;51(Suppl 45):115–93. Hodges CAGL, Drumm ML, Clarke LL. Mouse models expressing human CFTR to test CFTR-directed therapies. Pediatr Pulmonol. 2016;51(Suppl 45):115–93.
27.
go back to reference Darrah RJ, Bederman IR, Mitchell AL, Hodges CA, Campanaro CK, Drumm ML, Jacono FJ. Ventilatory pattern and energy expenditure are altered in cystic fibrosis mice. J Cyst Fibros. 2013;12:345–51.PubMedPubMedCentralCrossRef Darrah RJ, Bederman IR, Mitchell AL, Hodges CA, Campanaro CK, Drumm ML, Jacono FJ. Ventilatory pattern and energy expenditure are altered in cystic fibrosis mice. J Cyst Fibros. 2013;12:345–51.PubMedPubMedCentralCrossRef
28.
go back to reference Darrah RJ, Mitchell AL, Campanaro CK, Barbato ES, Litman P, Sattar A, Hodges CA, Drumm ML, Jacono FJ. Early pulmonary disease manifestations in cystic fibrosis mice. J Cyst Fibros. 2016;15:736–44.PubMedPubMedCentralCrossRef Darrah RJ, Mitchell AL, Campanaro CK, Barbato ES, Litman P, Sattar A, Hodges CA, Drumm ML, Jacono FJ. Early pulmonary disease manifestations in cystic fibrosis mice. J Cyst Fibros. 2016;15:736–44.PubMedPubMedCentralCrossRef
29.
go back to reference Cohen JC, Lundblad LK, Bates JH, Levitzky M, Larson JE. The "goldilocks effect" in cystic fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse. BMC Genet. 2004;5:21.PubMedCrossRef Cohen JC, Lundblad LK, Bates JH, Levitzky M, Larson JE. The "goldilocks effect" in cystic fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse. BMC Genet. 2004;5:21.PubMedCrossRef
30.
go back to reference Bonora M, Bernaudin J-F, Guernier C, Brahimi-Horn MC. Ventilatory responses to hypercapnia and hypoxia in conscious cystic fibrosis knockout mice cftr−/−. Pediatr Res. 2004;55:738–46.PubMedCrossRef Bonora M, Bernaudin J-F, Guernier C, Brahimi-Horn MC. Ventilatory responses to hypercapnia and hypoxia in conscious cystic fibrosis knockout mice cftr−/−. Pediatr Res. 2004;55:738–46.PubMedCrossRef
31.
go back to reference Bruscia EM, Zhang P-X, Barone C, Scholte BJ, Homer R, Krause DS, Egan ME. Increased susceptibility of Cftr(−/−) mice to LPS-induced lung remodeling. Am J Physiol Lung Cell Mol Physiol. 2016;310:711–9.CrossRef Bruscia EM, Zhang P-X, Barone C, Scholte BJ, Homer R, Krause DS, Egan ME. Increased susceptibility of Cftr(−/−) mice to LPS-induced lung remodeling. Am J Physiol Lung Cell Mol Physiol. 2016;310:711–9.CrossRef
32.
go back to reference Darrah RBT, LiPuma JJ, Litman P, Hodges CA, Jacono F, Drumm M. Cystic fibrosis mice develop spontaneous chronic bordetella airway infections. J Infect Pulm Dis. 2017;3 Darrah RBT, LiPuma JJ, Litman P, Hodges CA, Jacono F, Drumm M. Cystic fibrosis mice develop spontaneous chronic bordetella airway infections. J Infect Pulm Dis. 2017;3
33.
go back to reference Grubb BR, Vick RN, Boucher RC. Hyperabsorption of Na+ and raised ca(2+)-mediated cl- secretion in nasal epithelia of CF mice. Am J Phys. 1994;266:1478–83.CrossRef Grubb BR, Vick RN, Boucher RC. Hyperabsorption of Na+ and raised ca(2+)-mediated cl- secretion in nasal epithelia of CF mice. Am J Phys. 1994;266:1478–83.CrossRef
34.
go back to reference Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(−/−) mice. Proc Natl Acad Sci U S A. 1994;91:479–83.PubMedPubMedCentralCrossRef Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(−/−) mice. Proc Natl Acad Sci U S A. 1994;91:479–83.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Liu XM, Luo MH, Zhang L, Ding W, Yan ZY, Engelhardt JF. Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia. Am J Respir Cell Mol Biol. 2007;36:313–23.PubMedCrossRef Liu XM, Luo MH, Zhang L, Ding W, Yan ZY, Engelhardt JF. Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia. Am J Respir Cell Mol Biol. 2007;36:313–23.PubMedCrossRef
37.
go back to reference Lansdell KA, Delaney SJ, Lunn DP, Thomson SA, Sheppard DN, Wainwright BJ. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator cl(−) channels expressed in mammalian cells. J Physiol. 1998;508:379–92.PubMedPubMedCentralCrossRef Lansdell KA, Delaney SJ, Lunn DP, Thomson SA, Sheppard DN, Wainwright BJ. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator cl(−) channels expressed in mammalian cells. J Physiol. 1998;508:379–92.PubMedPubMedCentralCrossRef
38.
go back to reference Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet. 1992;2:240–8.PubMedCrossRef Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet. 1992;2:240–8.PubMedCrossRef
39.
go back to reference Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, Boucher RC. Characterization of wild-type and ΔF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell. 2005;16:2154–67.PubMedPubMedCentralCrossRef Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, Boucher RC. Characterization of wild-type and ΔF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell. 2005;16:2154–67.PubMedPubMedCentralCrossRef
40.
go back to reference Pack RJ, Al-Ugaily LH, Morris G. The cells of the tracheobronchial epithelium of the mouse: a quantitative light and electron microscope study. J Anat. 1981;132:71–84.PubMedPubMedCentral Pack RJ, Al-Ugaily LH, Morris G. The cells of the tracheobronchial epithelium of the mouse: a quantitative light and electron microscope study. J Anat. 1981;132:71–84.PubMedPubMedCentral
41.
go back to reference Verkman AS, Song Y, Thiagarajah JR. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am J Physiol Cell Physiol. 2003;284:2–15.CrossRef Verkman AS, Song Y, Thiagarajah JR. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am J Physiol Cell Physiol. 2003;284:2–15.CrossRef
42.
go back to reference Kent G, Oliver M, Foskett JK, Frndova H, Durie P, Forstner J, Forstner GG, Riordan JR, Percy D, Buchwald M. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr Res. 1996;40:233–41.PubMedCrossRef Kent G, Oliver M, Foskett JK, Frndova H, Durie P, Forstner J, Forstner GG, Riordan JR, Percy D, Buchwald M. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr Res. 1996;40:233–41.PubMedCrossRef
43.
go back to reference Bonvin E, Le Rouzic P, Bernaudin JF, Cottart CH, Vandebrouck C, Crie A, Leal T, Clement A, Bonora M. Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator-deficient mice. J Physiol Lond. 2008;586:3231–43.PubMedPubMedCentralCrossRef Bonvin E, Le Rouzic P, Bernaudin JF, Cottart CH, Vandebrouck C, Crie A, Leal T, Clement A, Bonora M. Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator-deficient mice. J Physiol Lond. 2008;586:3231–43.PubMedPubMedCentralCrossRef
44.
go back to reference Pan J, Luk C, Kent G, Cutz E, Yeger H. Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol Biol. 2006;35:320–6.PubMedPubMedCentralCrossRef Pan J, Luk C, Kent G, Cutz E, Yeger H. Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol Biol. 2006;35:320–6.PubMedPubMedCentralCrossRef
45.
go back to reference Zahm JM, Gaillard D, Dupuit F, Hinnrasky J, Porteous D, Dorin JR, Puchelle E. Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. Am J Phys. 1997;272:C853–9.CrossRef Zahm JM, Gaillard D, Dupuit F, Hinnrasky J, Porteous D, Dorin JR, Puchelle E. Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. Am J Phys. 1997;272:C853–9.CrossRef
46.
go back to reference Grubb BR, Jones JH, Boucher RC. Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice. Am J Physiol Lung Cell Mol Physiol. 2004;286:L588–95.PubMedCrossRef Grubb BR, Jones JH, Boucher RC. Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice. Am J Physiol Lung Cell Mol Physiol. 2004;286:L588–95.PubMedCrossRef
47.
48.
go back to reference Bangel N, Dahlhoff C, Sobczak K, Weber W-M, Kusche-Vihrog K. Upregulated expression of ENaC in human CF nasal epithelium. J Cyst Fibros. 2008;7:197–205.PubMedCrossRef Bangel N, Dahlhoff C, Sobczak K, Weber W-M, Kusche-Vihrog K. Upregulated expression of ENaC in human CF nasal epithelium. J Cyst Fibros. 2008;7:197–205.PubMedCrossRef
49.
go back to reference Saussereau EL, Roussel D, Diallo S, Debarbieux L, Edelman A, Sermet-Gaudelus I. Characterization of nasal potential difference in CFTR knockout and F508del-CFTR mice. PLoS One. 2013;8:7.CrossRef Saussereau EL, Roussel D, Diallo S, Debarbieux L, Edelman A, Sermet-Gaudelus I. Characterization of nasal potential difference in CFTR knockout and F508del-CFTR mice. PLoS One. 2013;8:7.CrossRef
50.
go back to reference van Doorninck JH, French PJ, Verbeek E, Peters RH, Morreau H, Bijman J, Scholte BJ. A mouse model for the cystic fibrosis delta F508 mutation. EMBO J. 1995;14:4403–11.PubMedPubMedCentral van Doorninck JH, French PJ, Verbeek E, Peters RH, Morreau H, Bijman J, Scholte BJ. A mouse model for the cystic fibrosis delta F508 mutation. EMBO J. 1995;14:4403–11.PubMedPubMedCentral
51.
go back to reference Delaney SJ, Alton EW, Smith SN, Lunn DP, Farley R, Lovelock PK, Thomson SA, Hume DA, Lamb D, Porteous DJ, et al. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J. 1996;15:955–63.PubMedPubMedCentral Delaney SJ, Alton EW, Smith SN, Lunn DP, Farley R, Lovelock PK, Thomson SA, Hume DA, Lamb D, Porteous DJ, et al. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J. 1996;15:955–63.PubMedPubMedCentral
52.
go back to reference Cmielewski P, Donnelley M, Parsons DW. Long-term therapeutic and reporter gene expression in lentiviral vector treated cystic fibrosis mice. J Gene Med. 2014;16:291–9.PubMedCrossRef Cmielewski P, Donnelley M, Parsons DW. Long-term therapeutic and reporter gene expression in lentiviral vector treated cystic fibrosis mice. J Gene Med. 2014;16:291–9.PubMedCrossRef
53.
go back to reference Lubamba B, Lebacq J, Reychler G, Marbaix E, Wallemacq P, Lebecque P, Leal T. Inhaled phosphodiesterase type 5 inhibitors restore chloride transport in cystic fibrosis mice. Eur Respir J. 2011;37:72–8.PubMedCrossRef Lubamba B, Lebacq J, Reychler G, Marbaix E, Wallemacq P, Lebecque P, Leal T. Inhaled phosphodiesterase type 5 inhibitors restore chloride transport in cystic fibrosis mice. Eur Respir J. 2011;37:72–8.PubMedCrossRef
54.
go back to reference Noel S, Wilke M, Bot AG, De Jonge HR, Becq F. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells. J Pharmacol Exp Ther. 2008;325:1016–23.PubMedCrossRef Noel S, Wilke M, Bot AG, De Jonge HR, Becq F. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells. J Pharmacol Exp Ther. 2008;325:1016–23.PubMedCrossRef
55.
go back to reference van Heeckeren A, Walenga R, Konstan MW, Bonfield T, Davis PB, Ferkol T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest. 1997;100:2810–5.CrossRef van Heeckeren A, Walenga R, Konstan MW, Bonfield T, Davis PB, Ferkol T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest. 1997;100:2810–5.CrossRef
56.
go back to reference van Heeckeren AM, Schluchter MD, Xue W, Davis PB. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am J Respir Crit Care Med. 2006;173:288–96.PubMedCrossRef van Heeckeren AM, Schluchter MD, Xue W, Davis PB. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am J Respir Crit Care Med. 2006;173:288–96.PubMedCrossRef
57.
go back to reference Stotland PK, Radzioch D, Stevenson MM. Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis. Pediatr Pulmonol. 2000;30:413–24.PubMedCrossRef Stotland PK, Radzioch D, Stevenson MM. Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis. Pediatr Pulmonol. 2000;30:413–24.PubMedCrossRef
58.
go back to reference McMorran BJ, Palmer JS, Lunn DP, Oceandy D, Costelloe EO, Thomas GR, Hume DA, Wainwright BJ. G551D CF mice display an abnormal host response and have impaired clearance of Pseudomonas lung disease. Am J Physiol Lung Cell Mol Physiol. 2001;281:L740–7.PubMedCrossRef McMorran BJ, Palmer JS, Lunn DP, Oceandy D, Costelloe EO, Thomas GR, Hume DA, Wainwright BJ. G551D CF mice display an abnormal host response and have impaired clearance of Pseudomonas lung disease. Am J Physiol Lung Cell Mol Physiol. 2001;281:L740–7.PubMedCrossRef
59.
go back to reference Coleman FT, Mueschenborn S, Meluleni G, Ray C, Carey VJ, Vargas SO, Cannon CL, Ausubel FM, Pier GB. Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc Natl Acad Sci U S A. 2003;100:1949–54.PubMedPubMedCentralCrossRef Coleman FT, Mueschenborn S, Meluleni G, Ray C, Carey VJ, Vargas SO, Cannon CL, Ausubel FM, Pier GB. Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc Natl Acad Sci U S A. 2003;100:1949–54.PubMedPubMedCentralCrossRef
60.
go back to reference Sajjan U, Thanassoulis G, Cherapanov V, Lu A, Sjolin C, Steer B, Wu YJ, Rotstein OD, Kent G, McKerlie C, et al. Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr(−/−) mice. Infect Immun. 2001;69:5138–50.PubMedPubMedCentralCrossRef Sajjan U, Thanassoulis G, Cherapanov V, Lu A, Sjolin C, Steer B, Wu YJ, Rotstein OD, Kent G, McKerlie C, et al. Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr(−/−) mice. Infect Immun. 2001;69:5138–50.PubMedPubMedCentralCrossRef
61.
go back to reference Tsai WC, Hershenson MB, Zhou Y, Sajjan U. Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res. 2009;58:491–501.PubMedPubMedCentralCrossRef Tsai WC, Hershenson MB, Zhou Y, Sajjan U. Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res. 2009;58:491–501.PubMedPubMedCentralCrossRef
62.
go back to reference Bragonzi A, Paroni M, Pirone L, Coladarci I, Ascenzioni F, Bevivino A. Environmental Burkholderia cenocepacia strain enhances fitness by serial passages during long-term chronic airways infection in mice. Int J Mol Sci. 2017;18:2417.PubMedCentralCrossRef Bragonzi A, Paroni M, Pirone L, Coladarci I, Ascenzioni F, Bevivino A. Environmental Burkholderia cenocepacia strain enhances fitness by serial passages during long-term chronic airways infection in mice. Int J Mol Sci. 2017;18:2417.PubMedCentralCrossRef
63.
go back to reference Cigana C, Lorè NI, Riva C, De Fino I, Spagnuolo L, Sipione B, Rossi G, Nonis A, Cabrini G, Bragonzi A. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Sci Rep. 2016;6:21465.PubMedPubMedCentralCrossRef Cigana C, Lorè NI, Riva C, De Fino I, Spagnuolo L, Sipione B, Rossi G, Nonis A, Cabrini G, Bragonzi A. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Sci Rep. 2016;6:21465.PubMedPubMedCentralCrossRef
64.
go back to reference Cash HA, Woods DE, McCullough B, Johanson WG, Bass JA. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis. 1979;119:453–9.PubMed Cash HA, Woods DE, McCullough B, Johanson WG, Bass JA. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis. 1979;119:453–9.PubMed
65.
go back to reference Kent G, Iles R, Bear CE, Huan LJ, Griesenbach U, McKerlie C, Frndova H, Ackerley C, Gosselin D, Radzioch D, et al. Lung disease in mice with cystic fibrosis. J Clin Invest. 1997;100:3060–9.PubMedPubMedCentralCrossRef Kent G, Iles R, Bear CE, Huan LJ, Griesenbach U, McKerlie C, Frndova H, Ackerley C, Gosselin D, Radzioch D, et al. Lung disease in mice with cystic fibrosis. J Clin Invest. 1997;100:3060–9.PubMedPubMedCentralCrossRef
66.
go back to reference Tirkos S, Newbigging S, Nguyen V, Keet M, Ackerley C, Kent G, Rozmahel RF. Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator. Respir Res. 2006;7:51.PubMedPubMedCentralCrossRef Tirkos S, Newbigging S, Nguyen V, Keet M, Ackerley C, Kent G, Rozmahel RF. Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator. Respir Res. 2006;7:51.PubMedPubMedCentralCrossRef
67.
go back to reference Gosselin D, Stevenson MM, Cowley EA, Griesenbach U, Eidelman DH, Boule M, Tam MF, Kent C, Skamene E, Tsui LC, Radzioch D. Impaired ability of Cftr knockout mice to control lung infection with Pseudomonas aeruginosa. Am J Respir Crit Care Med. 1998;157:1253–62.PubMedCrossRef Gosselin D, Stevenson MM, Cowley EA, Griesenbach U, Eidelman DH, Boule M, Tam MF, Kent C, Skamene E, Tsui LC, Radzioch D. Impaired ability of Cftr knockout mice to control lung infection with Pseudomonas aeruginosa. Am J Respir Crit Care Med. 1998;157:1253–62.PubMedCrossRef
68.
go back to reference Tóth B, Wilke M, Stanke F, Dorsch M, Jansen S, Wedekind D, Charizopoulou N, Bot A, Burmester M, Leonhard-Marek S, et al. Very mild disease phenotype of congenic Cftr(TgH(neoim)Hgu )cystic fibrosis mice. BMC Genet. 2008;9:28.PubMedPubMedCentralCrossRef Tóth B, Wilke M, Stanke F, Dorsch M, Jansen S, Wedekind D, Charizopoulou N, Bot A, Burmester M, Leonhard-Marek S, et al. Very mild disease phenotype of congenic Cftr(TgH(neoim)Hgu )cystic fibrosis mice. BMC Genet. 2008;9:28.PubMedPubMedCentralCrossRef
69.
go back to reference Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med. 2004;10:487–93.PubMedCrossRef Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med. 2004;10:487–93.PubMedCrossRef
70.
go back to reference Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D, Harm M, Graeber SY, Dalpke A, Schultz C, Mall MA. The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros. 2011;10(2):172–82.CrossRef Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D, Harm M, Graeber SY, Dalpke A, Schultz C, Mall MA. The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros. 2011;10(2):172–82.CrossRef
71.
go back to reference Mall MA, Harkema JR, Trojanek JB, Treis D, Livraghi A, Schubert S, Zhou Z, Kreda SM, Tilley SL, Hudson EJ, et al. Development of chronic bronchitis and emphysema in beta-epithelial Na(+) channel-overexpressing mice. Am J Respir Crit Care Med. 2008;177:730–42.PubMedCrossRef Mall MA, Harkema JR, Trojanek JB, Treis D, Livraghi A, Schubert S, Zhou Z, Kreda SM, Tilley SL, Hudson EJ, et al. Development of chronic bronchitis and emphysema in beta-epithelial Na(+) channel-overexpressing mice. Am J Respir Crit Care Med. 2008;177:730–42.PubMedCrossRef
72.
go back to reference Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, Boucher RC, Randell SH, O’Neal WK. Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol. 2012;5:397–408.PubMedPubMedCentralCrossRef Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, Boucher RC, Randell SH, O’Neal WK. Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol. 2012;5:397–408.PubMedPubMedCentralCrossRef
73.
go back to reference Stahr CS, Samarage CR, Donnelley M, Farrow N, Morgan KS, Zosky G, Boucher RC, Siu KKW, Mall MA, Parsons DW, et al. Quantification of heterogeneity in lung disease with image-based pulmonary function testing. Sci Rep. 2016;6:10.CrossRef Stahr CS, Samarage CR, Donnelley M, Farrow N, Morgan KS, Zosky G, Boucher RC, Siu KKW, Mall MA, Parsons DW, et al. Quantification of heterogeneity in lung disease with image-based pulmonary function testing. Sci Rep. 2016;6:10.CrossRef
75.
go back to reference Smolich JJ, Stratford BF, Maloney JE, Ritchie BC. New features in the development of the submucosal gland of the respiratory tract. J Anat. 1978;127:223–38.PubMedPubMedCentral Smolich JJ, Stratford BF, Maloney JE, Ritchie BC. New features in the development of the submucosal gland of the respiratory tract. J Anat. 1978;127:223–38.PubMedPubMedCentral
76.
go back to reference Joo NS, Irokawa T, Robbins RC, Wine JJ. Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands. J Biol Chem. 2006;281:7392–8.PubMedCrossRef Joo NS, Irokawa T, Robbins RC, Wine JJ. Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands. J Biol Chem. 2006;281:7392–8.PubMedCrossRef
77.
go back to reference Birket S, Tuggle KL, Oden A, Fernandez CM, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. The mucus transport defect in the CF rat airway is normalized by addition of bicarbonate. Pediatr Pulmonol. 2016;51(Suppl 45):194–485. Birket S, Tuggle KL, Oden A, Fernandez CM, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. The mucus transport defect in the CF rat airway is normalized by addition of bicarbonate. Pediatr Pulmonol. 2016;51(Suppl 45):194–485.
78.
go back to reference Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487:109–13.PubMedPubMedCentralCrossRef Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487:109–13.PubMedPubMedCentralCrossRef
79.
go back to reference Schultz A, Puvvadi R, Borisov SM, Shaw NC, Klimant I, Berry LJ, Montgomery ST, Nguyen T, Kreda SM, Kicic A, et al. Airway surface liquid pH is not acidic in children with cystic fibrosis. Nat Commun. 2017;8:1409.PubMedPubMedCentralCrossRef Schultz A, Puvvadi R, Borisov SM, Shaw NC, Klimant I, Berry LJ, Montgomery ST, Nguyen T, Kreda SM, Kicic A, et al. Airway surface liquid pH is not acidic in children with cystic fibrosis. Nat Commun. 2017;8:1409.PubMedPubMedCentralCrossRef
80.
go back to reference Birket SE, Tuggle KL, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. CFTR−/− rat exhibits delayed mucociliary clearance characteristic of cystic fibrosis airway disease. Pediatr Pulmonol. 2014;49(38):216–456. Birket SE, Tuggle KL, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. CFTR−/− rat exhibits delayed mucociliary clearance characteristic of cystic fibrosis airway disease. Pediatr Pulmonol. 2014;49(38):216–456.
81.
go back to reference Birket S, Tuggle KL, Chu KK, Harris WT, Tearney G, Fanucchi MV, Sorscher EJ, Rowe SM. The CFTR−/− rat is susceptible to pseudomonas aeruginosa infection. Pediatr Pulmonol. 2015;50(41):193–S453. Birket S, Tuggle KL, Chu KK, Harris WT, Tearney G, Fanucchi MV, Sorscher EJ, Rowe SM. The CFTR−/− rat is susceptible to pseudomonas aeruginosa infection. Pediatr Pulmonol. 2015;50(41):193–S453.
82.
go back to reference Darnell MER, Plant EP, Watanabe H, Byrum R, Claire MS, Ward JM, Taylor DR. Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets. J Infect Dis. 2007;196:1329–38.PubMedCrossRef Darnell MER, Plant EP, Watanabe H, Byrum R, Claire MS, Ward JM, Taylor DR. Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets. J Infect Dis. 2007;196:1329–38.PubMedCrossRef
83.
go back to reference Krammer F, Hai R, Yondola M, Tan GS, Leyva-Grado VH, Ryder AB, Miller MS, Rose JK, Palese P, Garcia-Sastre A, Albrecht RA. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J Virol. 2014;88:3432–42.PubMedPubMedCentralCrossRef Krammer F, Hai R, Yondola M, Tan GS, Leyva-Grado VH, Ryder AB, Miller MS, Rose JK, Palese P, Garcia-Sastre A, Albrecht RA. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J Virol. 2014;88:3432–42.PubMedPubMedCentralCrossRef
84.
go back to reference Sehgal A, Presente A, Engelhardt JF. Developmental expression patterns of CFTR in ferret tracheal surface airway and submucosal gland epithelia. Am J Respir Cell Mol Biol. 1996;15:122–31.PubMedCrossRef Sehgal A, Presente A, Engelhardt JF. Developmental expression patterns of CFTR in ferret tracheal surface airway and submucosal gland epithelia. Am J Respir Cell Mol Biol. 1996;15:122–31.PubMedCrossRef
85.
go back to reference Robinson NP, Venning L, Kyle H, Widdicombe JG. Quantitation of the secretory-cells of the ferret tracheobronchial tree. J Anat. 1986;145:173–88.PubMedPubMedCentral Robinson NP, Venning L, Kyle H, Widdicombe JG. Quantitation of the secretory-cells of the ferret tracheobronchial tree. J Anat. 1986;145:173–88.PubMedPubMedCentral
86.
go back to reference Sun XS, Olivier AK, Liang B, Yi YL, Sui HS, Evans TIA, Zhang YL, Zhou WH, Tyler SR, Fisher JT, et al. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol. 2014;50:502–12.PubMedPubMedCentralCrossRef Sun XS, Olivier AK, Liang B, Yi YL, Sui HS, Evans TIA, Zhang YL, Zhou WH, Tyler SR, Fisher JT, et al. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol. 2014;50:502–12.PubMedPubMedCentralCrossRef
87.
go back to reference Fisher JT, Tyler SR, Zhang YL, Lee BJ, Liu XM, Sun XS, Sui HS, Liang B, Luo MH, Xie WL, et al. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets. Am J Respir Cell Mol Biol. 2013;49:837–44.PubMedPubMedCentralCrossRef Fisher JT, Tyler SR, Zhang YL, Lee BJ, Liu XM, Sun XS, Sui HS, Liang B, Luo MH, Xie WL, et al. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets. Am J Respir Cell Mol Biol. 2013;49:837–44.PubMedPubMedCentralCrossRef
88.
go back to reference Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB, Engelhardt JF. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev. 2015;26:38–49.PubMedCrossRef Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB, Engelhardt JF. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev. 2015;26:38–49.PubMedCrossRef
89.
go back to reference Olivier AK, Yi Y, Sun X, Sui H, Liang B, Hu S, Xie W, Fisher JT, Keiser NW, Lei D, et al. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest. 2012;122:3755–68.PubMedPubMedCentralCrossRef Olivier AK, Yi Y, Sun X, Sui H, Liang B, Hu S, Xie W, Fisher JT, Keiser NW, Lei D, et al. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest. 2012;122:3755–68.PubMedPubMedCentralCrossRef
90.
go back to reference Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, et al. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295:240–63.CrossRef Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, et al. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295:240–63.CrossRef
91.
go back to reference Pabst R, Binns RM. The immune-system of the respiratory-tract in pigs. Vet Immunol Immunopathol. 1994;43:151–6.PubMedCrossRef Pabst R, Binns RM. The immune-system of the respiratory-tract in pigs. Vet Immunol Immunopathol. 1994;43:151–6.PubMedCrossRef
92.
go back to reference Ostedgaard LS, Rogers CS, Dong QA, Randak CO, Vermeer DW, Rokhlina T, Karp PH, Welsh MJ. Processing and function of CFTR-Delta F508 are species-dependent. Proc Natl Acad Sci U S A. 2007;104:15370–5.PubMedPubMedCentralCrossRef Ostedgaard LS, Rogers CS, Dong QA, Randak CO, Vermeer DW, Rokhlina T, Karp PH, Welsh MJ. Processing and function of CFTR-Delta F508 are species-dependent. Proc Natl Acad Sci U S A. 2007;104:15370–5.PubMedPubMedCentralCrossRef
93.
go back to reference Ostedgaard LS, Meyerholz DK, Chen J-H, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, et al. The delta F508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med. 2011;3:74ra24.PubMedPubMedCentralCrossRef Ostedgaard LS, Meyerholz DK, Chen J-H, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, et al. The delta F508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med. 2011;3:74ra24.PubMedPubMedCentralCrossRef
94.
go back to reference Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010;2:29ra31.PubMedPubMedCentralCrossRef Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010;2:29ra31.PubMedPubMedCentralCrossRef
95.
go back to reference Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, et al. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest. 2013;123:2685–93.PubMedPubMedCentralCrossRef Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, et al. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest. 2013;123:2685–93.PubMedPubMedCentralCrossRef
96.
go back to reference Armstrong DS, Hook SM, Jamsen KM, Nixon GM, Carzino R, Carlin JB, Robertson CF, Grimwood K. Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr Pulmonol. 2005;40:500–10.PubMedCrossRef Armstrong DS, Hook SM, Jamsen KM, Nixon GM, Carzino R, Carlin JB, Robertson CF, Grimwood K. Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr Pulmonol. 2005;40:500–10.PubMedCrossRef
97.
go back to reference Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L, Stick SM, Robinson PJ, Robertson CF, Ranganathan SC, Arest CF. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med. 2009;180:146–52.PubMedCrossRef Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L, Stick SM, Robinson PJ, Robertson CF, Ranganathan SC, Arest CF. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med. 2009;180:146–52.PubMedCrossRef
98.
go back to reference Hoo AF, Thia LP, The TDN, Bush A, Chudleigh J, Lum S, Ahmed D, Lynn IB, Carr SB, Chavasse RJ, et al. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax. 2012;67:874–81.PubMedCrossRef Hoo AF, Thia LP, The TDN, Bush A, Chudleigh J, Lum S, Ahmed D, Lynn IB, Carr SB, Chavasse RJ, et al. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax. 2012;67:874–81.PubMedCrossRef
99.
go back to reference Adam RJ, Michalski AS, Bauer C, Abou Alaiwa MH, Gross TJ, Awadalla MS, Bouzek DC, Gansemer ND, Taft PJ, Hoegger MJ, et al. Air trapping and airflow obstruction in newborn cystic fibrosis piglets. Am J Respir Crit Care Med. 2013;188:1434–41.PubMedPubMedCentralCrossRef Adam RJ, Michalski AS, Bauer C, Abou Alaiwa MH, Gross TJ, Awadalla MS, Bouzek DC, Gansemer ND, Taft PJ, Hoegger MJ, et al. Air trapping and airflow obstruction in newborn cystic fibrosis piglets. Am J Respir Crit Care Med. 2013;188:1434–41.PubMedPubMedCentralCrossRef
100.
go back to reference Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, et al. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med. 2010;182:1251–61.PubMedPubMedCentralCrossRef Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, et al. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med. 2010;182:1251–61.PubMedPubMedCentralCrossRef
101.
go back to reference Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K, et al. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell. 2010;143:911–23.PubMedPubMedCentralCrossRef Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K, et al. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell. 2010;143:911–23.PubMedPubMedCentralCrossRef
102.
go back to reference Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ, Awadalla MA, Moninger TO, Michalski AS, Hoffman EA, Zabner J, et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science. 2014;345:818–22.PubMedPubMedCentralCrossRef Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ, Awadalla MA, Moninger TO, Michalski AS, Hoffman EA, Zabner J, et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science. 2014;345:818–22.PubMedPubMedCentralCrossRef
103.
go back to reference Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR, Powers LS, Gansemer ND, Meyerholz DK, Welsh MJ, Stoltz DA, et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight. 2016;1 Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR, Powers LS, Gansemer ND, Meyerholz DK, Welsh MJ, Stoltz DA, et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight. 2016;1
104.
go back to reference Steines B, Dickey DD, Bergen J, Excoffon KJDA, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, et al. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI insight. 2016;1:e88728.PubMedPubMedCentralCrossRef Steines B, Dickey DD, Bergen J, Excoffon KJDA, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, et al. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI insight. 2016;1:e88728.PubMedPubMedCentralCrossRef
105.
go back to reference Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal models of cystic fibrosis pathology: phenotypic parallels and divergences. Biomed Res Int. 2016;2016:5258727. Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal models of cystic fibrosis pathology: phenotypic parallels and divergences. Biomed Res Int. 2016;2016:5258727.
106.
go back to reference Kamaruzaman NA, Kardia E, Kamaldin NA, Latahir AZ, Yahaya BH. The rabbit as a model for studying lung disease and stem cell therapy. Biomed Res Int. 2013;12 Kamaruzaman NA, Kardia E, Kamaldin NA, Latahir AZ, Yahaya BH. The rabbit as a model for studying lung disease and stem cell therapy. Biomed Res Int. 2013;12
108.
go back to reference Regnis JA, Robinson M, Bailey DL, Cook P, Hooper P, Chan HK, Gonda I, Bautovich G, Bye PTP. Mucociliary clearance in patients with cystic-fibrosis and in normal subjects. Am J Respir Crit Care Med. 1994;150:66–71.PubMedCrossRef Regnis JA, Robinson M, Bailey DL, Cook P, Hooper P, Chan HK, Gonda I, Bautovich G, Bye PTP. Mucociliary clearance in patients with cystic-fibrosis and in normal subjects. Am J Respir Crit Care Med. 1994;150:66–71.PubMedCrossRef
109.
go back to reference Itani OA, Chen J-H, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney-Tait J, Zabner J, Welsh MJ. Human cystic fibrosis airway epithelia have reduced cl− conductance but not increased Na+ conductance. Proc Natl Acad Sci U S A. 2011;108:10260–5.PubMedPubMedCentralCrossRef Itani OA, Chen J-H, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney-Tait J, Zabner J, Welsh MJ. Human cystic fibrosis airway epithelia have reduced cl− conductance but not increased Na+ conductance. Proc Natl Acad Sci U S A. 2011;108:10260–5.PubMedPubMedCentralCrossRef
110.
go back to reference Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science. 1983;221:1067–70.PubMedCrossRef Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science. 1983;221:1067–70.PubMedCrossRef
111.
go back to reference Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest. 1986;78:1245–52.PubMedPubMedCentralCrossRef Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest. 1986;78:1245–52.PubMedPubMedCentralCrossRef
112.
113.
go back to reference Bedrossian CW, Greenberg SD, Singer DB, Hansen JJ, Rosenberg HS. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol. 1976;7:195–204.PubMedCrossRef Bedrossian CW, Greenberg SD, Singer DB, Hansen JJ, Rosenberg HS. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol. 1976;7:195–204.PubMedCrossRef
114.
go back to reference Rosenfeld M, Gibson RL, McNamara S, Emerson J, Burns JL, Castile R, Hiatt P, McCoy K, Wilson CB, Inglis A, et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol. 2001;32:356–66.PubMedCrossRef Rosenfeld M, Gibson RL, McNamara S, Emerson J, Burns JL, Castile R, Hiatt P, McCoy K, Wilson CB, Inglis A, et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol. 2001;32:356–66.PubMedCrossRef
115.
go back to reference Muhlebach MS, Stewart PW, Leigh MW, Noah TL. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med. 1999;160:186–91.PubMedCrossRef Muhlebach MS, Stewart PW, Leigh MW, Noah TL. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med. 1999;160:186–91.PubMedCrossRef
Metadata
Title
Airway disease phenotypes in animal models of cystic fibrosis
Authors
Alexandra McCarron
Martin Donnelley
David Parsons
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2018
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-018-0750-y

Other articles of this Issue 1/2018

Respiratory Research 1/2018 Go to the issue