Skip to main content
Top
Published in: Respiratory Research 1/2017

Open Access 01-12-2017 | Research

Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate

Authors: Charmion Cruickshank-Quinn, Michael Armstrong, Roger Powell, Joe Gomez, Marc Elie, Nichole Reisdorph

Published in: Respiratory Research | Issue 1/2017

Login to get access

Abstract

Background

Researchers investigating lung diseases, such as asthma, have questioned whether certain compounds previously reported in exhaled breath condensate (EBC) originate from saliva contamination. Moreover, despite its increasing use in ‘omics profiling studies, the constituents of EBC remain largely uncharacterized. The present study aims to define the usefulness of EBC in investigating lung disease by comparing EBC, saliva, and saliva-contaminated EBC using targeted and untargeted mass spectrometry and the potential of metabolite loss from adsorption to EBC sample collection tubes.

Methods

Liquid chromatography mass spectrometry (LC-MS) was used to analyze samples from 133 individuals from three different cohorts. Levels of amino acids and eicosanoids, two classes of molecules previously reported in EBC and saliva, were measured using targeted LC-MS. Cohort 1 was used to examine contamination of EBC by saliva. Samples from Cohort 1 consisted of clean EBC, saliva-contaminated EBC, and clean saliva from 13 healthy volunteers; samples were analyzed using untargeted LC-MS. Cohort 2 was used to compare eicosanoid levels from matched EBC and saliva collected from 107 asthmatic subjects. Samples were analyzed using both targeted and untargeted LC-MS. Cohort 3 samples consisted of clean-EBC collected from 13 subjects, including smokers and non-smokers, and were used to independently confirm findings; samples were analyzed using targeted LC-MS, untargeted LC-MS, and proteomics. In addition to human samples, an in-house developed nebulizing system was used to determine the potential for EBC samples to be contaminated by saliva.

Results

Out of the 400 metabolites detected in both EBC and saliva, 77 were specific to EBC; however, EBC samples were concentrated 20-fold to achieve this level of sensitivity. Amino acid concentrations ranged from 196 pg/mL – 4 μg/mL (clean EBC), 1.98 ng/mL – 6 μg/mL (saliva-contaminated EBC), and 13.84 ng/mL – 1256 mg/mL (saliva). Eicosanoid concentration ranges were an order of magnitude lower; 10 pg/mL – 76.5 ng/mL (clean EBC), 10 pg/mL – 898 ng/mL (saliva-contaminated EBC), and 2.54 ng/mL – 272.9 mg/mL (saliva). Although the sample size of the replication cohort (Cohort 3) did not allow for statistical comparisons, two proteins and 19 eicosanoids were detected in smoker vs. non-smoker clean-EBC.

Conclusions

We conclude that metabolites are present and detectable in EBC using LC-MS; however, a large starting volume of sample is required.
Appendix
Available only for authorised users
Literature
2.
go back to reference Brzozowska A, Majak P, Jerzyńska J, Smejda K, Bobrowska-Korzeniowska M, Stelmach W, et al. Exhaled nitric oxide correlates with IL-2, MCP-1, PDGF-BB and TIMP-2 in exhaled breath condensate of children with refractory asthma. Adv Dermatol Allergol. 2015;32(2):107–13. doi:10.5114/pdia.2014.40953.CrossRef Brzozowska A, Majak P, Jerzyńska J, Smejda K, Bobrowska-Korzeniowska M, Stelmach W, et al. Exhaled nitric oxide correlates with IL-2, MCP-1, PDGF-BB and TIMP-2 in exhaled breath condensate of children with refractory asthma. Adv Dermatol Allergol. 2015;32(2):107–13. doi:10.​5114/​pdia.​2014.​40953.CrossRef
3.
4.
go back to reference Esther Jr CR, Boysen G, Olsen BM, Collins LB, Ghio AJ, Swenberg JW, et al. Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2009;296(6):L987–L93. doi:10.1152/ajplung.90512.2008.CrossRefPubMedPubMedCentral Esther Jr CR, Boysen G, Olsen BM, Collins LB, Ghio AJ, Swenberg JW, et al. Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2009;296(6):L987–L93. doi:10.​1152/​ajplung.​90512.​2008.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Monge ME, Pérez JJ, Dwivedi P, Zhou M, McCarty NA, Stecenko AA, et al. Ion mobility and liquid chromatography/mass spectrometry strategies for exhaled breath condensate glucose quantitation in cystic fibrosis studies. Rapid Commun Mass Spectrom. 2013;27(20):2263–71. doi:10.1002/rcm.6683.CrossRefPubMed Monge ME, Pérez JJ, Dwivedi P, Zhou M, McCarty NA, Stecenko AA, et al. Ion mobility and liquid chromatography/mass spectrometry strategies for exhaled breath condensate glucose quantitation in cystic fibrosis studies. Rapid Commun Mass Spectrom. 2013;27(20):2263–71. doi:10.​1002/​rcm.​6683.CrossRefPubMed
11.
go back to reference Pelclová D, Fenclová Z, Vlcková S, Lebedová J, Syslová K, Pecha O, et al. Leukotrienes B4, C4, D4 and E4 in the exhaled breath condensate (EBC), blood and urine in patients with pneumoconiosis. Ind Health. 2012;50(4):299–306.CrossRefPubMed Pelclová D, Fenclová Z, Vlcková S, Lebedová J, Syslová K, Pecha O, et al. Leukotrienes B4, C4, D4 and E4 in the exhaled breath condensate (EBC), blood and urine in patients with pneumoconiosis. Ind Health. 2012;50(4):299–306.CrossRefPubMed
14.
go back to reference Samitas K, Chorianopoulos D, Vittorakis S, Zervas E, Economidou E, Papatheodorou G, et al. Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir Res. 2009;103(5):750–6. doi:10.1016/j.rmed.2008.11.009. Samitas K, Chorianopoulos D, Vittorakis S, Zervas E, Economidou E, Papatheodorou G, et al. Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir Res. 2009;103(5):750–6. doi:10.​1016/​j.​rmed.​2008.​11.​009.
15.
go back to reference Antczak A, Ciebiada M, Pietras T, Piotrowski WJ, Kurmanowska Z, Górski P. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Arch Med Sci. 2012;8(2):277–85.CrossRefPubMedPubMedCentral Antczak A, Ciebiada M, Pietras T, Piotrowski WJ, Kurmanowska Z, Górski P. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Arch Med Sci. 2012;8(2):277–85.CrossRefPubMedPubMedCentral
16.
go back to reference Svedahl SR, Svendsen K, Tufvesson E, Romundstad PR, Sjaastad AK, Qvenild T, et al. Inflammatory markers in blood and exhaled air after short-term exposure to cooking fumes. Ann Occup Hyg. 2013;57(2):230–9. doi:10.1093/annhyg/mes069.PubMed Svedahl SR, Svendsen K, Tufvesson E, Romundstad PR, Sjaastad AK, Qvenild T, et al. Inflammatory markers in blood and exhaled air after short-term exposure to cooking fumes. Ann Occup Hyg. 2013;57(2):230–9. doi:10.​1093/​annhyg/​mes069.PubMed
17.
go back to reference Chérot-Kornobis N, Hulo S, Edmé JL, de Broucker V, Matran R, Sobaszek A. Analysis of nitrogen oxides (NOx) in the exhaled breath condensate (EBC) of subjects with asthma as a complement to exhaled nitric oxide (FeNO) measurements: a cross-sectional study. BMC Res Notes. 2011;16(4):202. doi:10.1186/1756-0500-4-202.CrossRef Chérot-Kornobis N, Hulo S, Edmé JL, de Broucker V, Matran R, Sobaszek A. Analysis of nitrogen oxides (NOx) in the exhaled breath condensate (EBC) of subjects with asthma as a complement to exhaled nitric oxide (FeNO) measurements: a cross-sectional study. BMC Res Notes. 2011;16(4):202. doi:10.​1186/​1756-0500-4-202.CrossRef
19.
go back to reference Conventz A, Musiol A, Brodowsky C, Müller-Lux A, Dewes P, Kraus T, et al. Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B. 2007;860(1):78–85. doi:10.1016/j.jchromb.2007.10.031.CrossRef Conventz A, Musiol A, Brodowsky C, Müller-Lux A, Dewes P, Kraus T, et al. Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B. 2007;860(1):78–85. doi:10.​1016/​j.​jchromb.​2007.​10.​031.CrossRef
20.
go back to reference Førli L, Pedersen JI, Bjørtuft Ø, Vatn M, Kofstad J, Boe J. Serum amino acids in relation to nutritional status, lung function and energy intake in patients with advanced pulmonary disease. Respir Med. 2000;94(9):868–74. doi:10.1053/rmed.2000.0830.CrossRefPubMed Førli L, Pedersen JI, Bjørtuft Ø, Vatn M, Kofstad J, Boe J. Serum amino acids in relation to nutritional status, lung function and energy intake in patients with advanced pulmonary disease. Respir Med. 2000;94(9):868–74. doi:10.​1053/​rmed.​2000.​0830.CrossRefPubMed
22.
go back to reference Ubhi BK, Cheng KK, Dong J, Janowitz T, Jodrell D, Tal-Singer R, et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol BioSyst. 2012;8(12):3125–33.CrossRefPubMed Ubhi BK, Cheng KK, Dong J, Janowitz T, Jodrell D, Tal-Singer R, et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol BioSyst. 2012;8(12):3125–33.CrossRefPubMed
25.
go back to reference Gaber F, Acevedo F, Delin I, Sundblad B-M, Palmberg L, Larsson K, et al. Saliva is one likely source of leukotriene B4 in exhaled breath condensate. Eur Respir J. 2006;28(6):1229–35.CrossRefPubMed Gaber F, Acevedo F, Delin I, Sundblad B-M, Palmberg L, Larsson K, et al. Saliva is one likely source of leukotriene B4 in exhaled breath condensate. Eur Respir J. 2006;28(6):1229–35.CrossRefPubMed
26.
go back to reference Bessonneau V, Bojko B, Pawliszyn J. Analysis of human saliva metabolome by direct immersion solid-phase microextraction LC and benchtop orbitrap MS. Bioanalysis. 2013;5(7):783–92.CrossRefPubMed Bessonneau V, Bojko B, Pawliszyn J. Analysis of human saliva metabolome by direct immersion solid-phase microextraction LC and benchtop orbitrap MS. Bioanalysis. 2013;5(7):783–92.CrossRefPubMed
29.
go back to reference Syslová K, Kačer P, Vilhanová B, Kuzma M, Lipovová P, Fenclová Z, et al. Determination of cysteinyl leukotrienes in exhaled breath condensate: method combining immunoseparation with LC-ESI-MS/MS. J Chromatogr B. 2011;879(23):2220–8.CrossRef Syslová K, Kačer P, Vilhanová B, Kuzma M, Lipovová P, Fenclová Z, et al. Determination of cysteinyl leukotrienes in exhaled breath condensate: method combining immunoseparation with LC-ESI-MS/MS. J Chromatogr B. 2011;879(23):2220–8.CrossRef
35.
go back to reference Harrington C, Reen FJ, Mooij MJ, Stewart FA, Chabot J-B, Guerra AF, et al. Characterisation of non-autoinducing Tropodithietic Acid (TDA) production from marine sponge pseudovibrio species. Mar Drugs. 2012;12(12):5960–78. doi:10.3390/md12125960.CrossRef Harrington C, Reen FJ, Mooij MJ, Stewart FA, Chabot J-B, Guerra AF, et al. Characterisation of non-autoinducing Tropodithietic Acid (TDA) production from marine sponge pseudovibrio species. Mar Drugs. 2012;12(12):5960–78. doi:10.​3390/​md12125960.CrossRef
37.
go back to reference Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ. Exhaled leukotrienes and prostaglandins in COPD. Thorax. 2013;58(7):585–8.CrossRef Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ. Exhaled leukotrienes and prostaglandins in COPD. Thorax. 2013;58(7):585–8.CrossRef
38.
go back to reference Piotrowski WJ, Antczak A, Marczak J, Nawrocka A, Kurmanowska Z, Górski P. Eicosanoids in exhaled breath condensate and BAL fluid of patients with sarcoidosis. Chest. 2007;132(2):589–96.CrossRefPubMed Piotrowski WJ, Antczak A, Marczak J, Nawrocka A, Kurmanowska Z, Górski P. Eicosanoids in exhaled breath condensate and BAL fluid of patients with sarcoidosis. Chest. 2007;132(2):589–96.CrossRefPubMed
39.
go back to reference Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D, et al. A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am J Respir Crit Care Med. 2003;168(12):1500–5.CrossRefPubMed Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D, et al. A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am J Respir Crit Care Med. 2003;168(12):1500–5.CrossRefPubMed
40.
go back to reference Folesani G, Corradi M, Goldoni M, Manini P, Acampa O, Andreoli R, et al. Urea in exhaled breath condensate of uraemics and patients with chronic airway diseases. Acta bio-medica: Atenei Parmensis. 2008;79(Supplemental 1):79–86. Folesani G, Corradi M, Goldoni M, Manini P, Acampa O, Andreoli R, et al. Urea in exhaled breath condensate of uraemics and patients with chronic airway diseases. Acta bio-medica: Atenei Parmensis. 2008;79(Supplemental 1):79–86.
41.
go back to reference Dwyer TM. Sampling airway surface liquid: non-volatiles in the exhaled breath condensate. Lung. 2004;182(4):241–50.CrossRefPubMed Dwyer TM. Sampling airway surface liquid: non-volatiles in the exhaled breath condensate. Lung. 2004;182(4):241–50.CrossRefPubMed
42.
go back to reference Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--The human metabolome database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7.CrossRefPubMed Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--The human metabolome database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7.CrossRefPubMed
43.
46.
go back to reference Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–81. doi:10.1038/nature11228.CrossRefPubMed Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–81. doi:10.​1038/​nature11228.CrossRefPubMed
47.
go back to reference Al-Daghri NM, Alokail MS, Abd-Alrahman SH, Draz HM, Yakout SM, Clerici M. Polycyclic aromatic hydrocarbon exposure and pediatric asthma in children: a case–control study. Environ Health. 2013;12(1). doi:10.1186/1476-069X-12-1. Al-Daghri NM, Alokail MS, Abd-Alrahman SH, Draz HM, Yakout SM, Clerici M. Polycyclic aromatic hydrocarbon exposure and pediatric asthma in children: a case–control study. Environ Health. 2013;12(1). doi:10.​1186/​1476-069X-12-1.
48.
go back to reference Gomaa EA, Gray JI, Rabie S, Lopez-Bote C, Booren AM. Polycyclic aromatic hydrocarbons in smoked food products and commercial liquid smoke flavourings. Food Addit Contam. 1993;10(5):503–21.CrossRefPubMed Gomaa EA, Gray JI, Rabie S, Lopez-Bote C, Booren AM. Polycyclic aromatic hydrocarbons in smoked food products and commercial liquid smoke flavourings. Food Addit Contam. 1993;10(5):503–21.CrossRefPubMed
50.
go back to reference Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett. 2007;5(4):169–95.CrossRef Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett. 2007;5(4):169–95.CrossRef
52.
56.
go back to reference Rossi R, Milzani A, Dalle-Donne I, Giustarini D, Lusini L, Colombo R, et al. Blood glutathione disulfide: in vivo factor or in vitro artifact? Clin Chem. 2002;48(5):742–53.PubMed Rossi R, Milzani A, Dalle-Donne I, Giustarini D, Lusini L, Colombo R, et al. Blood glutathione disulfide: in vivo factor or in vitro artifact? Clin Chem. 2002;48(5):742–53.PubMed
57.
go back to reference Montuschi P, Martello S, Felli M, Mondino C, Chiarotti M. Ion trap liquid chromatography/tandem mass spectrometry analysis of leukotriene B4 in exhaled breath condensate. Rapid Commun Mass Spectrom. 2004;18(22):2723–9. doi:10.1002/rcm.1682.CrossRefPubMed Montuschi P, Martello S, Felli M, Mondino C, Chiarotti M. Ion trap liquid chromatography/tandem mass spectrometry analysis of leukotriene B4 in exhaled breath condensate. Rapid Commun Mass Spectrom. 2004;18(22):2723–9. doi:10.​1002/​rcm.​1682.CrossRefPubMed
60.
Metadata
Title
Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate
Authors
Charmion Cruickshank-Quinn
Michael Armstrong
Roger Powell
Joe Gomez
Marc Elie
Nichole Reisdorph
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2017
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-017-0538-5

Other articles of this Issue 1/2017

Respiratory Research 1/2017 Go to the issue